

TIP/ix Programming Reference

IP-622

This edition applies to TIP/ix 2.5 and revision levels of TIP/ix 2.5 until
otherwise indicated in a new edition. Publications can be requested from
the address given below.

TIP Studio 2.5 reserves the right to modify or revise this document
without notice. Except where a Software Usage Agreement has been
executed, no contractual obligation between Inglenet Business Solutions
Inc and the recipient is either expressed or implied.

It is agreed and understood that the information contained herein is
Proprietary and Confidential and that the recipient shall take all
necessary precautions to ensure the confidentiality thereof.

If you have a license agreement for TIP Studio or TIP/ix with Inglenet
Business Solutions Inc, you may make copies of this documentation for
internal use. Otherwise, you may not copy or transmit this document, in
whole or in part, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of
Inglenet Business Solutions Inc.

Inglenet Business Solutions Inc

Toll Free: 1-800-387-9391

Website: http://www.Inglenet.com

Sales: Sales@Inglenet.com

Help Desk: HelpDesk@Inglenet.com

TIP Studio, TIP/ix, and TIP/30, and are registered trade marks of Inglenet
Business Solutions Inc:

This documentation occasionally makes reference to the products of
other corporations. These product names may be trade marks, registered
or otherwise, or service marks of these corporations. Where this is the
case, they are hereby acknowledged as such by Inglenet Business
Solutions Inc.

© Inglenet Business Solutions Inc, 1990-2011

http://www.inglenet.com/
mailto:Sales@Inglenet.com

 Program Control System (PCS)

April 2011 Confidential i

Contents

Program Control System (PCS) 7

Online Program Structure .. 7

Program Execution Stack .. 8

Fixed Order Parameter Passing .. 12

Linkage Items .. 13

Transaction End .. 26

PIB-LOCK-INDICATOR Action .. 27

PCS Subroutines ... 28

BATPEER - Peer-to-Peer from Batch 30

BATQUEUE - Queuing from Batch 31

TIPBITS - Convert Bytes to Bits .. 31

TIPBYTES - Convert Bits to Bytes 34

TIPDATE - Return Date ... 35

TIPDUMP - Force Program Dump 35

TIPDXC - Delayed Transfer Control 36

TIPJUMP - Direct Transfer Control 37

TIPFLAG - Flag Services .. 38

TIPFORK - Start Program at a Terminal 41

TIPFORK - Start Background Program 44

TIPFORKW - Start Program in New Window 46

TIPGRPS - Retrieve Elective Groups................................ 47

TIPGRPST - Change Elective Groups 48

TIPMSG - Retrieving Error Messages 50

TIPPEER - Peer-to-Peer Processing 53

TIPQUEUE - Record Queuing ... 61

TIPRTN - End Online Program .. 70

TIPSNAP - Snap Dump Memory 71

TIPSUB - Perform Program ... 72

TIPSUBP - Call a Subprogram .. 75

TIPTIMER - Timer Services .. 76

TIPUSR - Where is User ... 80

TIPUSRID - User Information .. 81

TIPUSRST ï Set new User Information 82

TIPWINAP - Run a DOS or Windows Program 83

TIPXCTL - Transfer Control .. 84

Message Control System (MCS) 86

Provided Interfaces ... 86

MCS Screen Formats .. 87

MCS Subroutines .. 89

TIP Programming Reference

ii Proprietary IP-622

Program Control after CALL .. 90

MCS Interface Packet ... 91

MCS Subroutine CALLS.. 95

TIPASK - Display One Line and Return Answer 95

TIPASKYN - Display One Line and Return Answer 97

TIPERASE - Erase Screen .. 99

TIPLIST - Pick From a List .. 100

TIPMENU - Display Menu Bar ... 107

TIPMSGE - Send Error Text To Screen 108

TIPMSGEO - Define Deferred Error Text 110

TIPMSGI - Read Data from Screen Format 110

TIPMSGO - Output Data to Screen Format 114

TIPMSGOV - Overlay Current Screen 117

TIPMSGPR - Print Current Screen 119

TIPMSGRS - Pop the Current Screen............................. 120

TIPMSGRV - Force Full Screen Transmit 121

TIPTITLE - Display Title .. 122

FCC Modifications ... 122

Cursor Positioning ... 126

Context Sensitive Help .. 126

Help Text Definition ... 127

TSTWIN - Sample TIP Program 129

Line Oriented Terminal I/O .. 136

Function Key Input .. 137

BREAK - Check For Operator Break 137

PARAM - Parameterize Data .. 138

PROMPT - Prompt Terminal for Reply 140

PROMPTX8 - Prompt for Text ... 142

ROLL - Output Line & Roll Screen 143

ROLLPT - Set Terminal Roll Point 144

TEXT - Get One Line From Terminal 145

TEXT80 - Get One Line From Terminal 145

Direct Communications I/O .. 146

Direct Communications I/O ... 146

Message Formats .. 146

TC-DCOUT copybook ... 148

TIPTERM Functions .. 149

T-GET - Get Input .. 150

T-PUT - Output Message .. 152

Paging API ... 154

Introduction to Terminal Paging 154

TIPPAGE Paging API .. 155

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential iii

Function Calls .. 157

File Control System (FCS) 162

FCS Overview .. 162

FCS and Program Access ... 162

Record Locking ... 163

Journaling Online Files .. 163

Before Images ... 163

After Images .. 164

Dynamic Files .. 164

Setting a File in Sequential Mode.................................... 164

Record Locking ... 164

Call TIPFCS - Common Parameters 167

FCS Miscellaneous Functions ... 170

Techniques for Deleting Records 175

TIPFCS for Indexed Files .. 176

FCS-ADD - Indexed: Add Record 177

FCS-CLOSE - Indexed: Close File 178

FCS-DELETE - Indexed: Delete Record 178

FCS-ESETL - Indexed: End Sequential Mode 179

FCS-FLUSH - Indexed: Flush File 179

FCS-GET - Indexed: Read by Key 180

FCS-GET - Indexed: Read Sequential Key 181

FCS-GET-INDEX - Indexed: Read for Key 182

FCS-GET-KEYED - Indexed: Read by Key 184

FCS-GET-SEQ-LOCK - Indexed: WORKAROUND 185

FCS-GET-SEQ-NEXT - Indexed: Read Next Record 186

FCS-GET-SEQ-PREV - Indexed: Read Previous Record
... 187

FCS-GETRN - Indexed: Read by Record Number 188

FCS-GETUP - Indexed: Read With Lock 189

FCS-LOCK - Indexed: Lock Record 191

FCS-NEXT - Indexed: Get Next Record.......................... 193

FCS-NOUP - Indexed: Cancel Update 194

FCS-OPEN - Indexed: Open File 195

FCS-PREV - Indexed: Get Previous Record 196

FCS-PUT - Indexed: Rewrite Record 198

FCS-SETL - Indexed: Set Sequential Mode 199

FCS-SETL-BOF - Indexed: Set Sequential Mode 200

FCS-SETL-EOF - Indexed: Set Sequential Mode 201

FCS-SETL-EQ - Indexed: Set Sequential Mode 201

FCS-SETL-GT - Indexed: Set Sequential Mode 203

TIP Programming Reference

iv Proprietary IP-622

FCS-SKIP - Indexed: Skip Sequentially 204

TIPFCS for Direct Files ... 205

FCS-ADD - Direct: Add Record 205

FCS-CLOSE - Direct: Close File 206

FCS-DELETE - Direct: Delete Record 207

FCS-FLUSH - Direct: Flush File 208

FCS-GET - Direct: Read Record 208

FCS-GETUP - Direct: Read With Lock............................ 209

FCS-NOUP - Direct: Cancel Update 210

FCS-OPEN - Direct: Open File .. 211

FCS-PUT - Direct: Update Record 212

TIPFCS for Sequential Files .. 213

TIPFCS for Sequential Files .. 213

FCS-CLOSE - Sequential: Close File.............................. 213

FCS-GET - Sequential: Read Record 214

FCS-OPEN - Sequential: Open File 215

FCS-PUT - Sequential: Write A Record 216

TIPFCS for Dynamic Files ... 217

FCS-ACCESS - Dynamic: Access File............................ 218

FCS-ASSIGN - Dynamic: Assign File.............................. 219

FCS-CLOSE - Dynamic: Close File 220

FCS-CREATE - Dynamic Create File.............................. 220

FCS-GET - Dynamic: Read Record(s) 221

FCS-OPEN - Dynamic: Open File 223

FCS-PUT - Dynamic: Write Record(s) 224

FCS-SCRATCH - Dynamic: Scratch File 225

TIPFCS for Edit Buffers... 226

TIPFCS for Edit Buffers ... 226

FCS-ADD - Edit: Add/Insert Line 226

FCS-CLOSE - Edit: Close Buffer 227

FCS-DELETE - Edit: Delete Line 228

FCS-FLUSH - Edit: Flush Buffer 229

FCS-GET - Edit: Read Line ... 229

FCS-OPEN - Edit: Open Buffer 230

FCS-PUT - Edit: Replace Line .. 232

FCS-SCRATCH - Edit: Scratch Buffer 233

TIPFCS for Library Files.. 234

Library File Descriptor ... 235

FCS-CLOSE - Library: Close Element 236

FCS-GET - Library: Read Next Line................................ 236

FCS-NOUP - Library: Close Element (No update) 237

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential v

FCS-OPEN - Library: Open Element............................... 238

FCS-PUT - Library: Write Line .. 239

Transaction Suspend (TIPSUSPEND) 241

TIP Print Facility (TIPPRINT) ... 242

TIPPRINT Print Destinations ... 242

FCS-CLOSE - Close TIPPRINT Interface 245

FCS-FLUSH - Flush TIPPRINT Buffer 246

FCS-OPEN - Open TIPPRINT Interface 247

FCS-PUT - Output Print Line ... 253

Accessing TIP Journal Files ... 258

Journal and QBL File Record Format 258

Batch Journal File Access ... 265

FCS Batch Interface .. 266

Prepare to use batch Interface Routine 267

tipbatpi.o Interface Subroutine .. 267

Batch Commit and Rollback .. 268

PCXFER - PC File Transfer ... 270

File Transfer Interface copybooks 270

PCXFER Masking ... 274

Transfer from/to MS-DOS File ... 275

PCXFER Compression .. 275

FCS-OPEN - Open PCXFER Interface 275

FCS-GET - Input Record from computer......................... 277

FCS-PUT - Output Record to computer 278

FCS-FLUSH - Flush PCXFER Buffer 279

FCS-CLOSE - Close PCXFER Interface 280

Compiling and Testing Application Programs 282

Supported COBOL Compilers ... 282

Micro Focus COBOL ... 282

COBOL Makefiles .. 284

Debugging on-line programs ... 287

Embedded Debugging Statements 289

With Environment Variables from TIP Command Line: ... 304

Using Micro Focus cobanimsrv 305

Reference Tables .. 306

Hexadecimal - Decimal Conversion 306

Powers of 2 .. 307

Powers of 16 .. 307

ASCII Code Chart. ... 308

Standard Windows Character Set 308

TIP Programming Reference

vi Proprietary IP-622

National Replacement Character (NRC) Mappings 309

EBCDIC Code Chart .. 311

EBCDIC NRC Chart ... 311

Error Codes ... 312

Unix Shell Error ... 312

Micro Focus Cobol .. 312

Return Status from Unix System Calls 313

D-ISAM Error Codes ... 313

Information Management System(IMS) 314

TIP and IMS Interaction ... 315

Output for Input Queuing, from IMS Programs 316

IMS Status Codes ... 317

Known Differences between IMS and TIP 317

Index .. 318

 Program Control System (PCS)

April 2011 Confidential 7

Program Control System (PCS)

This chapter describes the facilities of the Program Control System
(PCS). All TIP facilities that provide program control are included in this
classification.

PCS, as a component of TIP, controls the execution of all transaction
programs and provides monitor-level functions for transaction programs.
Services are provided to support inter-program transfer of control and to
permit transaction programs to access timer facilities.

The facilities of PCS are available to transaction programs by issuing
standard programming language CALLs to subroutines provided with the
TIP system.

When transaction programs are linked, the appropriate subroutine object
modules are automatically included. In almost all cases, the subroutines
are very small interface routines that transfer control to the resident TIP
PCS routines.

When writing online programs, these facilities (especially those allowing
transfer of control from one program to another) permit the programmer to
use familiar control structures that are taken for granted in batch
programs.

All TIP programs, regardless of the manner in which they were actually
invoked, return control to the calling program by issuing a call to the
subroutine TIPRTN.

This standardized return mechanism means that all TIP programs may
operate either as a sub function or as a main function without the need for
special code in the program. This powerful feature facilitates the creation
of modular application systems.

Online Program Structure

TIP provides an environment for transaction programs. TIP provides
several areas of main storage for each transaction program. Some areas
are used to communicate information to the TIP system; other areas are
used as external work areas by the transaction program.

A transaction program may be servicing a number of users at one time. In
order to accomplish this, the program must have separate working areas
for each instance of the program.

TIP calls a transaction program exactly as if the program was a
subroutine of TIP. The addresses of the fixed areas of storage that are
allocated for use by the transaction program are passed as parameters to
the transaction program.

TIP Programming Reference

8 Proprietary IP-622

Online programs that operate in TIP native mode must be aware of the
parameters that are automatically passed by TIP. All transaction
programs are called either by TIP (if executed from the command line) or
another program (if called via the TIPSUB mechanism for example).

The following discussion illustrates the general structure of a TIP native
mode program. For convenience, the examples use COBOL syntax.

Program Execution Stack

Program Stack

TIP transaction programs operate in a stack oriented environment. The
standard system prompt is displayed by the TIP command line processor
to allow the terminal operator to enter a transaction name and any initial
command line parameters that may be required by the transaction. When
the program begins execution, it is considered to be executing on stack
level one - the initial TIP prompt is regarded as stack level zero.

If the initial program transfers control to another program without an
implied return of control (using TIPDXC or TIPXCTL), the called program
simply replaces the initial program on the current stack level.

Activation Record

On the other hand, if the initial program transfers control to another
program with an implied return of control, TIP does the following:

· Suspends execution of the calling program

· Saves the calling program's "activation record" (PIB, CDA, MCS, and
WORK-AREA).

· Allocates and initializes (to low values) the called program's activation
record

· Copies the calling program's CDA contents into the called program's
CDA (for a length of the shorter of the two CDA areas)

· Establishes the PIB, MCS, WORK-AREA for the called program and
initializes these areas

· Begins execution of the called program.

The called program is now running at the next higher stack level (level
"two" in this case).

Climbing the Stack

This process of "climbing" the stack may proceed up to 16 levels. When
any program issues a call to the TIPRTN subroutine, TIP does the
following:

· Loads the saved "activation record" of the program that preceded the
terminating program on the execution stack

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 9

· Copies the contents of the CDA of the terminating program to the
CDA of the previous program on the stack (for a length of the shorter
of the two CDA areas)

· De-allocates the PIB, MCS, and WORK-AREA of the terminating
program

· Resumes execution of the program that invoked the terminating
program.

Transferring Data to Another Program

The only information that is passed from stack level to stack level in either
direction is the contents of the CDA. Since different programs have
different CDA sizes, TIP only copies information between CDA areas for a
length of the shorter CDA; therefore, programs can invoke other
programs that may represent entire applications as if they were
subroutines.

The calling program's environment is restored intact (with the exception of
the CDA) whenever the called program (or any descendants of it)
terminates back down the stack. A program that is suspended in this
manner is not resumed until the stack returns to that point - this may be
minutes, hours, or days later!

Record-Oriented Program-to-Program Communications

TIP provides a number of functions that allow one program to exchange
data with another. These functions (TIPXCTL, TIPSUB, TIPFORK, etc)
are described in the PCS section of the Programming Reference. They
are similar in that they pass both control and data from program to
program. For example, when program A transfers control to program B by
using the TIPXCTL function, program A puts the data into its own CDA
(Continuity Data Area). The TIP system copies Aôs CDA to Bôs CDA.
Thus, when program B begins execution, its CDA will contain a copy of
Aôs CDA.

In addition to the above mentioned functions, TIP also provides two
record-passing techniques that also allow programs to exchange data.
These two functions are TIPPEER and TIPQUEUE. Both of these
functions allow one transaction program to send records to another.
Unlike the PCS functions, these functions are record oriented and do not
involve the transfer of control to another program.

TIPPEER
provides a real-time link between two transaction
programs. The programs may execute within the same TIP
system, or execute on different TIP systems that may be
on different computer systems. You use the TIPPEER
interface the same way you use the TIPFCS interface.
Your program OPENs the TIPPEER connection, issues a
series of GETs and PUTs to it, and then CLOSEs the
connection when it has finished. Your program would use
TIPPEER if it needs to exchange information in a real-time
or immediate fashion.

TIP Programming Reference

10 Proprietary IP-622

However, it may not be possible to establish a connection.
For example, the other computer may not be running, the
other TIP system may not be up, or the network connection
may not be available, etc. The initiating program should
take appropriate action in situations when it cannot get a
connection. Establishing a TIPPEER connection to another
program, is similar to making a phone call.

TIPQUEUE
provides a store-and-forward capability, which allows
transaction programs to reliably deliver records to other
transaction programs. You control the TIPQUEUE interface
much like the TIPFCS file interface. That is, a program
OPENs a TIPQUEUE file, issues a series of GETs or PUTs
to it, and CLOSEs the queue when it has finished.
Whereas TIPPEER is a bi-directional (conversational)
function, TIPQUEUE is a unidirectional function. That is, a
transaction program can write records to a TIP queue, or
read records from it, but cannot do both with the same TIP
queue. Programs that write to a TIP queue are client
transactions. Programs that read from the TIP queue are
server transactions.

TIPQUEUE is transaction oriented. If a program writes to a TIP queue,
then issues a commit request, it secures the data in the TIP queue.
Likewise, if a program writes to a TIP queue, then subsequently issues a
rollback request, all records written to the TIP queue since the last
commit point are backed out.

Finally, if TIPPEER is like talking on the telephone, then TIPQUEUE is
like leaving a message on a telephone answering computer. The
important thing is that the message is heard eventually.

The TIP WHOSON Utility

The TIP utility program WHOSON displays the execution stack level of a
program. The ability to stack or nest program execution is illustrated by
the following hierarchy of programs:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 11

In this example, PROG-A offers a choice of "performing" function B or C.
Instead of transferring control (permanently) to either of those programs,
PROG-A performs a TIPSUB operation that "performs" (in a sense similar
to the COBOL PERFORM verb) the transaction B or C. When B or C
terminates, control returns to PROG-A immediately following the call to
TIPSUB.

PROG-A must ensure that PROG-B or PROG-C (or PROG-D, PROG-E
or PROG-F) does not destroy any necessary information in the CDA,
although, generally, the CDA is only used for passing information to such
subordinate programs and all of the programs involved agree on the
layout of the CDA area.

The advantage of this scheme is that PROG-B does not know how it was
invoked. PROG-B performs its function and issues a call to TIPRTN. The
TIP system determines the return point.

This example must not be interpreted to mean that TIPSUB is preferable
to TIPXCTL. The programmer must choose between the two classic
techniques to transfer control:
 GO TO (TIPXCTL or TIPDXC) or PERFORM (TIPSUB).

Issuing a call to TIPSUB involves TIP system overhead - this overhead is
somewhat more than that required for TIPXCTL or TIPDXC.

Coding Suggestions

· Avoid partitioning an application system into modules that are too
small. A reasonable rule of thumb is to place code that is related by
use in one transaction program. For example, use TIPSUB to
"PERFORM" infrequently used functions that are not worth
permanently imbedding in the load module.

· Avoid writing programs that are either excessively fragmented or are
monolithic monsters.

TIP Programming Reference

12 Proprietary IP-622

· Avoid using a transfer of control to execute a relatively minor task.

· A particularly poor idea is designing a system that uses TIPSUB to
"perform" a routine that issues file I/O. In this case, the relatively high
overhead involved in a TIPSUB call (which almost always causes the
TIP system to perform input/output operations) is incurred just to
perform I/O for the application program. It is more efficient to perform
the I/O directly inline.

Fixed Order Parameter Passing

TIP passes five parameters to a transaction program, in the following
fixed order:

1. PIB Process Information Block

2. CDA Continuity Data Area order:

3. MCS Message Control System work area

4. WRK Work area

5. GDA Global Data Area

Each of these areas represents main storage, established by TIP, that the
transaction program may use.

Example:

DATA DIVISION.

LINKAGE SECTION.

01 PIB. COPY TC- PIB.

01 MCS. COPY TC- MCS.

01 WORK- AREA.

. . .

01 CDA. COPY TC- CDA.

01 GDA.

. . .

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA

 GDA

The order of appearance of the "01" levels in the LINKAGE SECTION is
not important, but the order of the areas specified in the PROCEDURE
DIVISION USING statement is critical, and fixed.

The names of the "01" level items are not important (although the names
illustrated in the example above have become somewhat of a tradition).
What is very crucial, however, is the rule that each name in the USING
list must refer to a corresponding named "01" level in the LINKAGE
section.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 13

Linkage Items

The PIB and the CDA must be present and are required. The MCS,
WORK-AREA and GDA are optional areas. If an individual program does
not use one or more of these areas, using a "dummy" linkage item to
maintain the correct USING list order is recommended.

COBOL does not permit the programmer to omit items from the USING
clause with one exception: trailing items may be omitted. If a program
does not intend to reference the Global Data Area (for example) the fifth
parameter may be omitted.

PIB - Process Information Block

The Process Information Block (PIB) is a fixed size and fixed format area
that contains information about the transaction that is executing. TIP
establishes a PIB area for each execution of a transaction program. Most
of the fields in the PIB are read-only in the sense that the transaction
program is never required to alter the field. A few fields, however, are
occasionally modified by the transaction program as a preliminary step to
calling a TIP subroutine.

TC-PIB Copy Book

The layout of the PIB is contained in the supplied COBOL copy book "TC-
PIB":

****************** ***********************************

 * TIP - PROCESS INFORMATION BLOCK *

05 PIB - TRID PICTURE X(8).

05 PIB - UID PICTURE X(8).

05 PIB - TID PICTURE X(4).

05 PIB - STATUS PICTURE X(1).

 88 PIB - GOOD VALUE " ".

 88 PIB - PROG- ABEND VALUE "A".

 88 PIB - BREAK VALUE "B".

 88 PIB - DUP- AFT- NAME VALUE "C".

 88 PIB - DUP- KEY VALUE "D".

 88 PIB - EOF VALUE "E".

 88 PIB - IO - ERROR VALUE "F".

 88 PIB - FUNCTION VALUE "G".

 88 PIB - ACTIVE VALUE "H".

 88 PIB - SECURITY VALUE "K".

 88 PIB - LOCKED VALUE "L".

 88 PIB - MSG- AVAIL VALUE "M".

 88 PIB - NO- MEM VALUE "M".

 88 PIB - NOT- FOUND VALUE "N".

 88 PIB - OVERFLOW VALUE "O".

 88 PIB - MISSING- PARAMS VALUE "P".

 88 PIB - TIMED- OUT VALUE "T".

 88 PIB - WRONG- MODE VALUE "W".

 88 PIB - NOT- HELD VALUE "X".

 88 PIB - HELD VALUE "Y".

 88 PIB - FULL VALUE "Z".

05 PIB - SYSTEM PICTURE X(1).

TIP Programming Reference

14 Proprietary IP-622

 88 PIB - EOJ- PENDING VALUE "E".

05 PIB - GROUP- 1 PICTURE X(8).

05 PIB - GROUP- 2 PICTURE X(8).

05 PIB - DATE PICTURE 9(6) COMP - 3.

05 PIB - TIME PICTURE 9(6) COMP - 3.

05 PIB - JULIAN - DATE.

 10 PIB - YEAR PICTURE 9(3) COMP - 4.

 10 PIB - DAY- OF- YEAR PICTURE 9(3) COMP - 4.

05 PIB - SITE - NAME PICTURE X(12).

05 PIB - SECURITY- CODE PICTURE 9(3) COMP - 4.

 88 PIB - TECH- USER VALUE 1.

 88 PIB - MASTER- USER VALUE 1 THRU 9.

 88 PIB - SYSTEM- USER VALUE 10 THRU 19.

 88 PIB - SYSTEM- OR- HIGHER VALUE 1 THRU 19.

 88 PIB - PROGRAMMER- USER VALUE 20 THRU 29.

 88 PIB - PROGRAMMER- OR- HIGHER VALUE 1 THRU 29.

 88 PIB - APPLICATION- USER VALUE 30 THRU 255.

 88 PIB - APPLICATION- OR- HIGHER VALUE 1 THRU 255.

05 PIB - ACCOUNT- NUMBER PICTURE X(4).

05 PIB - LAST- MCS- NAME PICTURE X(8).

05 PIB - LOCAP PICTURE X(8).

05 PIB - WAIT- TIME PICTURE S9(4) COMP - 4.

05 PIB - DETAIL- STATUS PICTURE 9(4) COMP - 4.

 88 PIB - DUPS- AHEAD VALUE 1.

 88 PIB - LOAD- MODULE- NOT- FOUND VALUE 56.

 88 PIB - LOAD- MODULE- SIZE - ZERO VALUE 57.

 88 PIB - LOAD- MODULE- TOO- LARGE VALUE 58.

 88 PIB - NO- FREEMEM- TO- LOAD- PROGRAM VALUE 59.

 88 PIB - NO- BACKGROUND- TABLES VALUE 60.

 88 PIB - ERROR- DURING- PROGRAM- LOAD VALUE 61.

 88 PIB - NOT- FOUND- IN - TIP - CAT VALUE 62.

 88 PIB - NOT- ALLOWED- BACKGROUND VALUE 63.

 88 PIB - TERM- LOCAP- NAME- INVALID VALUE 64.

05 PIB - LOCK- INDICATOR PICTURE X(1).

 88 PIB - ROLLBACK VALUE "O".

 88 PIB - RELEASE VALUE "R".

 88 PIB - HOLD VALUE "H".

 88 PIB - COMMIT VALUE " ".

05 PIB - RPG- UPSI PICTURE X(1).

05 PIB - ALT- MCS- ROW PICTURE 9(3) COMP - 4.

05 PIB - CDA- I PICTURE 9(8) COMP - 4.

05 PIB - WRK- I PICTURE 9(8) COMP- 4.

05 PIB - LEVEL PICTURE 9(3) COMP - 4.

05 PIB - TERM- TYPE PICTURE 9(4) COMP - 4.

 88 PIB - UTS- 20 VALUE 2.

 88 PIB - UTS- 40 VALUE 4.

 88 PIB - UTS- 60 VALUE 6.

 88 PIB - TELETYPE VALUE 11.

 88 PIB - OFIS- PC VALUE 13.

 88 PIB - TIPFE VALUE 20.

 88 PIB - TIPWEB VALUE 30.

 88 PIB - TIPWEBSERVICE VALUE 32.

05 PIB - MIRAM- REL- REC- NUM PICTURE 9(9) COMP - 4.

05 PIB - CDA- SIZE PICTURE 9(8) COMP - 4.

05 PIB - MCS- SIZE PICTURE 9(8) COMP - 4.

05 PIB - WRK- SIZE PICTURE 9(8) COMP - 4.

05 PIB - CDA- LENGTH PICTURE 9(8) COMP - 4.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 15

05 PIB - LANGUAGE PICTURE X(1).

05 PIB - WDEL- INDICATOR PICTURE X(1).

 88 PIB - WAIT- DELIVERY VALUE "Y".

 88 PIB - NO- WAIT- DELIVERY VALUE "N".

05 PIB - ALT- MCS- COL PICTURE 9(3) COMP - 4.

05 PIB - MAX- MCS- ROW PICTURE 9(3) COMP - 4.

05 PIB - MAX- MCS- COL PICTURE 9(3) COMP - 4.

05 PIB - MCS- FIELD PICTURE 9(4) COMP - 4.

05 PIB - MCS- OVERLAY PICTURE 9(3) COMP - 4.

05 PIB - MCS- KEY PICTURE X.

 88 PIB - XMIT VALUE " ".

 88 PIB - MSG- WAIT VALUE "0".

 88 P IB - FKEY1 VALUE "1".

 88 PIB - FKEY2 VALUE "2".

 88 PIB - FKEY3 VALUE "3".

 88 PIB - FKEY4 VALUE "4".

 88 PIB - FKEY5 VALUE "5".

 88 PIB - FKEY6 VALUE "6".

 88 PIB - FKEY7 VALUE "7".

 88 PIB - FKEY8 VALUE "8".

 88 PIB - FKEY9 VALUE "9".

 88 PIB - FKEY10 VALUE "A".

 88 PIB - FKEY11 VALUE "B".

 88 PIB - FKEY12 VALUE "C".

 88 PIB - FKEY13 VALUE "D".

 88 PIB - FKEY14 VALUE "E".

 88 PIB - FKEY15 VALUE "F".

 88 PIB - FKEY16 VALUE "G".

 88 PIB - FKEY17 VALUE "H".

 88 PIB - FKEY18 VALUE "I".

 88 PIB - FKEY19 VALUE "J".

 88 PIB - FKEY20 VALUE "K".

 88 PIB - FKEY21 VALUE "L".

 88 PIB - FKEY22 VALUE "M".

 88 PIB - F- REBUILD VALUE "1" "5" "N".

 88 PIB - F- NEXT VALUE "2" "6".

 88 PIB - F- UPDATE VALUE "4" "8".

 88 PIB - F- FIELD VALUE "<".

 88 PIB - F- MENU VALUE ">".

05 PIB - TEST- MODE- INDICATOR PICTURE X.

 88 PIB - TEST- MODE- ON VALUE "Y".

 88 PIB - TEST- MODE- OFF VALUE "N".

05 PIB - HOST- NAME PICTURE X(12).

05 PIB - TERM- NAME PICTURE X(8).

05 PIB - CUR- MCS- ROW PICTURE 9(3) COMP - 4.

05 PIB - CUR- MCS- COL PICTURE 9(3) COMP - 4.

05 PIB - SYSTEM- TYPE PICTURE X.

 88 PIB - TIP30 VALUE "U".

 88 PIB - TIPIX VALUE "X".

05 PIB - K- INTERFACE PICTURE X(17).

05 PIB - TYPE PICTURE X.

 88 PIB - TYPE- PEER VALUE "P ".

 88 PIB - TYPE- QUEUE VALUE "Q".

 88 PIB - TYPE- SUB VALUE "S".

 88 PIB - TYPE- SUBP VALUE "R".

 88 PIB - TYPE- FORK VALUE "F".

 88 PIB - TYPE- MSG VALUE "M".

TIP Programming Reference

16 Proprietary IP-622

 88 PIB - TYPE- TIP VALUE "T".

 88 PIB - TYPE- WEBSERVICE VALUE "W".

05 PIB - CENTURY PICTURE 99.

05 FILLER PICTURE X.

05 PIB - FCS- WAIT- TIME PICTURE S9(4) COMP - 4.

 * Long Date format YYYYMMDD

 05 PIB - LONG- DATE PICTURE 9(8).

 05 FILLER REDEFINES PIB - LONG- DATE.

 10 PIB - L- YEAR PICTURE 9(4).

 10 FILLER REDEFINES PIB - L- YEAR.

 15 PIB - L- CENTURY PICTURE 9(2).

 15 PIB - L- YY PICTURE 9(2).

 10 PIB - L- MM PICTUR E 9(2).

 10 PIB - L- DD PICTURE 9(2).

 05 PIB - IN - LOCAP PICTURE X(8).

 05 PIB - DBI - STS PICTURE 9(5).

 05 PIB - ODBC- STS PICTURE X(5).

 05 FILLER PICTURE X(16).

 * Last 4 bytes holds '$PiB' for overrun detection

 05 FILLER PICTURE X(04).

* Keep FILLER so the whole PIB is 232 bytes.

The following is a description of the fields that make up the PIB.:

PIB-TRID
This eight byte field contains the name of the transaction
that is currently executing. The program may interrogate
this field to determine the transaction name by which the
program was called. Certain TIP subroutine calls (for
example: TIPSUB) require the program to move
information into this field. The field is reset to the original
value after a call to a TIP subroutine that required
modification of this field (example: TIPSUB, TIPSUBP).

PIB-UID
This eight byte field contains one of the following values:

user id
The user id of the user that is executing the
program.

BACK$nnn
The executing program is running as a background
process. "nnn" is 3 digits representing the assigned
background process number.

 PIB-TID
This four byte field is set to the name of the executing
terminal. The program may interrogate this field to
determine the name of the terminal running the program.

 For background processes, this field contains the terminal
name of the originating process (the parent process).

 The value inserted here by TIP is often the last four
characters of the user's terminal identifier (for example, the

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 17

terminal may be /dev/ttyx18, in which case the PIB-TID
field will contain "YX18". This is based on the assumption
that the last four characters are more likely to be unique

 The environment variable TIPTERM may be set to a
particular terminal name if the user wishes to force a
specific value.

PIB-STATUS
This one byte field contains the status returned as a result
of a call to a TIP subroutine. A number of 88 level items
are defined in the copy book for your convenience.

 It is strongly recommended that programs interrogate this
status field after a call to a TIP subroutine. Subroutine calls
that work one day may fail miserably the next due to
unforeseen external influences.

 The TIP Message Control System (MCS) also uses an
additional status field in the MCS area (MCS-STATUS).
The documentation of the various calls to MCS describes
the status that may be set for each of those calls.

 A value of PIB-GOOD indicates a successful call to the
subroutine as far as TIP is concerned. Any other value
may be an error - although it may be only a warning.

 PIB-SYSTEM
This one-byte field is set to the value "PIB-EOJ-PENDING"
if and only if TIP has been given the shutdown command
"EOJ".

 This mechanism allows TIP native mode programs to
detect EOJ requests. When a program detects this
condition, it is good practice to terminate the program as
soon as possible to expedite system shutdown procedures.

 At the very least, the program should attempt to inform the
terminal operator that system shutdown has been
requested.

PIB-GROUP-1
This field contains the name of the first elective group to
which the user belongs.

 If the user is not a member of a user group, this field
contains spaces

PIB-GROUP-2
This field contains the name of the second elective group
to which the user belongs.

 If the user is not a member of a user group, this field
contains spaces.

TIP Programming Reference

18 Proprietary IP-622

 The TIP system permits up to 16 elective groups for each
user. Only the first two elective group names are available
in the PIB. The names of all elective groups can be
obtained by using the subroutine call TIPGRPS.

PIB-DATE
This field contains the current date (in YYMMDD format -
year, month, day sequence).

PIB-TIME
This field contains the current time of day (in HHMMSS
format - hour, minute, second sequence).

Note: Due to the way TIP operates internally, this field
may not be accurate. The best resolution is
approximately 1 second (this field is updated by TIP
as a side effect of calling some of the TIP routines;
between calls to TIP service routines, the contents
of this field will not change). Programs that require
an accurate time of day (for example to time stamp
records or to generate a unique value) should
obtain the current time from the operating system;
COBOL provides the ACCEPT verb for this
purpose.

PIB-JULIAN-DATE
This group item contains the current date in the Julian
format (day of the year, example: 88 109).

PIB-SITE-NAME
This field contains the site name as retrieved from the Unix
uname system call.

PIB-SECURITY-CODE
This field contains the security level of the user running the
program.

 The security level is represented by a number between 1
and 255 (inclusive).

 In the TC-PIB copy book, various popular values are
indicated by 88 level items for this field.

PIB-ACCOUNT-NUMBER
This field contains the account code specified when the
user logged on TIP.

PIB-LAST-MCS-NAME
This field contains the name of the last TIP screen format
used at this terminal.

 If the last message output to the terminal was not issued
via the TIP Message Control System (MCS) this field
contains low-values.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 19

PIB-LOCAP
This field contains the network name of the computer
where the program is running.

PIB-WAIT-TIME
This field may be set by a program before soliciting
terminal input (via calls to TIPMSGI, PROMPT, or
TIPTERM). The system waits for an input message for only
the specified wait-time (expressed in seconds).

 If an input message does not arrive within the expected
time interval the PIB-STATUS for the corresponding input
request (TIPMSGI, PROMPT, etc.) is set to PIB-TIMED-
OUT.

 This field is reset to zero after each input message.

 If this field is set to a value greater than zero, the system
waits for the specified number of seconds for an input
message.

 If this field is set to a negative value (the sign is important -
not the magnitude of the number), the system waits for the
amount of time defined by the TIP definition parameter
TIMEOUT= in the tipix.conf file.

 If this field contains a zero, the system will not impose a
time limit on the arrival of the next input message.

PIB-DETAIL-STATUS
Some TIP subroutines set this field to provide additional
information about the status after a call to the subroutine.

 The value denoted by the 88-level item "PIB-DUPS-
AHEAD" is set by TIPFCS after a record read request
(FCS-GET, FCS-GETUP, FCS-NEXT) if there are records
with a duplicate key following the record that was read.

Note: MBP ISAM does not provide DUPS AHEAD status
information, so it cannot be passed to the
application.

PIB-LOCK-INDICATOR
A program sets this field whenever transaction end occurs
to indicate to the system the type of record lock handling
desired. See the discussion in Transaction End on page
26.

 TIP examines this field whenever the program calls
TIPRTN, TIPSUB, TIPDXC, TIPFORK, and TIPXCTL. Or
calls TIPFCS with a function code of FCS-TREN or solicits
terminal input (by calling TIPMSGI, PROMPT, etc.), or
calls FCS-CLOSE for a recoverable file. If this field is set
to:

TIP Programming Reference

20 Proprietary IP-622

Space
The default value. All record locks are released and
a TREN (transaction end) record is written to the
TIPIX.QBL file.

PIB-ROLLBACK (O)
All updates that were made to files that were
defined as "hold for transaction (HOLD=TR)" are
rolled back and a TREN (transaction end) record is
written to the TIPIX.QBL file.

PIB-RELEASE (R)
All records that are held (via FCS-GETUP) and
have not been updated by a corresponding PUT
are released. Record locks acquired by updating or
adding records are retained.

PIB-HOLD (H)
All record locks are maintained and transaction end
is not recognized at this time.

Example:
PROGRAM-A holds a record, moves an "H" to this
field, and TIPSUBs to PROGRAM-B. The
transaction end that normally would take place
when TIPSUB is called is suppressed -
PROGRAM-B will find that the record is still held for
update.

 This field is reset to a space only after it is examined by
TIP. The recommended technique is to move the
appropriate value to this field before calling a TIP
subroutine.

PIB-RPG-UPSI
User programs may use this field to communicate one byte
of information from one program stack level to the next
level. This field is cleared to low values when a transaction
begins. Thereafter, the program(s) control the contents of
this field.

 The field is named "RPG-UPSI" because TIP RPG
programs often use this field.

 A program could move a particular value to this field to
signal some sort of action to the next program that is
called.

PIB-ALT-MCS-ROW
Place a row number (between 1 and 24 inclusive) in this
field to override the starting row number for screen formats
that are used by the program.

 This field is cleared to zero when the transaction begins;
thereafter, TIP does not modify this field.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 21

 Row numbers placed in this field override the starting row
number for screen formats that are subsequently used by
the transaction.

 May be altered by the application program and define the
upper left hand corner of an MCS window.

PIB-CDA-I
CDA area size increment. This field may be set to a value
between 0 and 32,767 (inclusive) before transferring
control to another program.

 The CDA of the called program is increased in size by the
specified number of bytes. The increase represents an
amount in addition to the CDA= size specified in the called
program's definition record.

PIB-WRK-I
WORK-AREA size increment. This field may be set to a
value between 0 and 32,767 (inclusive) before transferring
control to another program.

 The WORK-AREA of the called program is increased in
size by the specified number of bytes. The increase
represents an amount in addition to the WORK= size
specified in the called program's definition record.

PIB-LEVEL
This field contains the current program execution stack
level. See the description of the program stack in the
previous section ï ñProgram Execution Stackò on page 8.

 This value is the same value that is reported by the
WHOSON utility program under the heading "Lvl".

PIB-TERM-TYPE
This field is set by the TIP system to identify the type of
terminal that is associated with the executing program. A
number of COBOL 88-level items are supplied for various
terminal types.

PIB-MIRAM-REL-REC-NUM
When the TIP File Control System reads a record from a
MIRAM file, this binary full-word is set to the relative record
number of that record. The TIPFCS function FCS-GETRN
can be used to read an indexed MIRAM file via a specified
relative record number. See the description of FCS-
GETRN in the documentation for accessing Indexed Files

PIB-CDA-SIZE
The TIP system sets this field to the size of the program's
CDA (Continuity Data Area). This value represents the
number of bytes in the CDA

TIP Programming Reference

22 Proprietary IP-622

PIB-MCS-SIZE
This field is set by the TIP system to the size of the
program's MCS (Message Control System Area). This
value represents the number of bytes in the MCS area.

PIB-CDA-LENGTH
This field may be set by a program to control the number of
bytes of data in the CDA that are to be passed to or
received from another program. If the program places a
value in this field that is greater than the size of the
program's CDA, the value is reduced to the size of the
CDA.

 A program which is transferring control may place a count
in this field to specify the maximum number of bytes to be
transferred to the called program and to limit the amount of
data that may be returned in the CDA when control returns
to this program.

 Data is copied from the calling program CDA to the called
program CDA for a length, which is computed as the least
of the values in the PIB-CDA-LENGTH field in the PIB for
both programs.

 Upon entry to a program, this field contains the same value
as the field PIB-CDA-SIZE.

PIB-LANGUAGE
This field is set to a one character code, which is the
assigned language code for the user. The language code
is specified in the TIP definition USER record for the user
id.

PIB-ALT-MCS-CO
Defines the column to which a screen format is to be
displayed.

 May be altered by the application program and define the
upper left hand corner of an MCS window.

PIB-MAX-MCS-ROW
May be read by the application program and define the
bottom right hand corner of an MCS window

PIB-MAX-MCS-COL
May be read by the application program and define the
bottom right hand corner of an MCS window.

PIB-MCS-FIELD
Returns the relative field number in which the cursor was
on the most recent transmit and/or function key.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 23

PIB-MCS-OVERLAY
Holds the current MCS overlay number. A value of ZERO
indicates that nothing is overlaid.

CDA - Continuity Data Area

The Continuity Data Area (CDA) is an area of storage that TIP provides
for transaction programs. It is the only area that is copied to and from
programs during inter-program linkage - hence the name "continuity". The
programmer determines the size and format of this area.

The TIP definition entry for the transaction contains the size (in bytes) of
the area.

If a program transfers control to another program, the program initiating
the transfer of control can specify the number of bytes in the CDA that are
to be transferred to the called program's CDA.

The actual size of the CDA is not limited (other than by the obvious
constraint of available memory). All transactions are automatically
assigned a minimum CDA area of 256 bytes.

If a transaction program is called from the TIP command line and the
transaction is defined with CML=YES, the TIP Command Line Processor
will place data from the command line into the program's CDA.

TC-CDA copybook

The COBOL copybook TC-CDA defines the format for this particular use
of the CDA:

 * TIP - COMMAND LINE FORMAT OF CDA *

* **

05 CDA- PARAMETERS.

 10 CDA- PARAM OCCURS 8 TIMES PICTURE X(8).

05 CDA- PARAMETERS- 9 REDEFINES CDA- PARAMETERS.

 10 CDA- PARAM- 9 OCCURS 8 TIMES PICTURE 9(8).

05 CDA- OPTIONS.

 10 CDA- OPTION OCCURS 8 TIMES PICTURE X.

05 CDA- OPTIONS- 9 REDEFINES CDA- OPTIONS.

 10 CDA- OPTION- 9 OCCURS 8 TIMES PICTURE 9.

05 CDA- TEXT PICTURE X(80).

The following is a description of the command line fields that make up the
CDA of a TIP program:

CDA-PARAMETERS
Up to eight positional command line parameters are
parameterized into these fields. Strictly numeric
parameters (parameters consisting of only digits "0"
through "9") are right justified and leading zero filled. Non-
numeric parameters are left justified and trailing space
filled.

TIP Programming Reference

24 Proprietary IP-622

 Alphabetic characters in this field are forced to uppercase
by the TIP command line processor (TCP).

CDA-OPTIONS
This field contains the command line option information.
Options immediately follow the transaction name and are
concatenated with the transaction name by a comma or a
slash.

 If no options are supplied, this field contains spaces.
 Alphabetic characters in this field are forced to uppercase
by TIP.

CDA-TEXT
This field contains the command line parameters (not the
transaction name or options!) in exactly the format they
were entered.

 TIP forces alphabetic characters in the CDA-TEXT area to
uppercase.

Additional Considerations:

If the program was not called from the TIP command line, the layout and
contents of the CDA are entirely at the discretion of the calling program.

MCS - MCS Area

The Message Control System Area (MCS) is an optional area that TIP
reserves for the transaction program. The transaction program normally
uses this area as a screen format I/O area although it may be used as a
work area for any purpose. The size of this area (in bytes) must be
correctly specified in the TIP definition for the transaction.

The MCS area is initially set to low values (X'00') by TIP.

TC-MCS copybook

The COBOL copybook TC-MCS defines the layout of the MCS packet
prefix that is required to interface with the Message Control System.

The fields in the MCS packet prefix are described in a separate section of
this document describing the Message Control System (MCS).

Work-Area

The WORK-AREA is an optional area that TIP reserves for the
transaction program. The size and layout of the work area is entirely at
the discretion of the programmer. Specify the size of the work area in the
TIP definition entry for the transaction program.

The normal practice is for the programmer to simply define any work
fields or areas that are needed by the program in this LINKAGE section
item.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 25

The COBOL compiler displays a DATA DIVISION MAP, which provides
information about all of the fields defined in the program's DATA
DIVISION. On the line where the "01" level item is defined, there appears
a length (as a number of bytes).

TIP programs use the work area as an area containing fields that are
modified during execution. The work area is the proper place for the
various record areas for files that are manipulated online.

TIP sets the work area to low values (all X'00') before the transaction
program is entered.

GDA - Global Data Area

The Global Data Area (GDA) is an optional area that may be configured
when TIP is defined (for more information, see the -G parameter for utility
TIPINSTALL in ARP-617, TIP Utilities).

If the GDA is defined in the TIP system, it is an area of fixed (specified)
size that can be accessed by all TIP programs that have access
permission. (You use the smprog utility to give a program permission to
access the GDA.)

The first full-word of the GDA is set to the length of the GDA in bytes. The
remainder of the GDA is cleared to low values (X'00') when the TIP
system starts.

Common Storage

One possible use of the GDA is to store a common table that is
referenced by many online programs. Instead of having each program
explicitly read the table into the program's work area, the GDA can be
initialized once with the desired data. Thereafter, all programs refer to the
table contained in the GDA.

GDA as Serial Resource

The GDA is a serial resource! Modification of this area might involve race
conditions. Some convention must be established and followed by
programs which intend to update the GDA.

Some techniques that may be used to queue access to the GDA are:

· use of the TIPFLAG subroutine

· locking a record (via a call to TIPFCS using FCS-GETUP) that is
designated as a control record for this purpose

TIP installations, that make use of the Global Data Area should consider
creating a local copybook that user-written programs can use to define
the layout of the GDA

TIP Programming Reference

26 Proprietary IP-622

Transaction End

When do Transactions Begin and End

Transaction Initiation

In TIP terms a transaction normally begins with the initiation of a program.
Since a number of activities take place at transaction end, it is important
to establish the conditions that cause TIP to consider that the transaction
has terminated.

TIP Transaction Termination

Transaction termination occurs as a result of one of the following events:

6. TIP or the hardware aborts.

7. The transaction program ABORTS and does not contain specific
coding to trap such errors.

8. The transaction program calls TIPFCS (the TIP File Control System)
with a function code of: FCS-TREN or FCS-CLOSE. However, FCS-
CLOSE for edit buffers, library files, dynamic files, and TIPPRINT
does not cause transaction termination ï as they are non-recoverable
files.

9. The transaction program calls TIPRTN (end of program).

10. The transaction program calls TIPSUB, TIPXCTL, TIPDXC or
TIPFORK (various transfers of control).

11. The transaction program solicits terminal input (via TIPMSGI,
PROMPT, TIPTERM, etc.) without previously specifying that record
locks are to be maintained across terminal input.

12. The transaction program calls TIPPEER with a function code of FCS-
CLOSE.

In cases (1) and (2), the system always rolls back any updates since the
last commit point (transaction end) for files that were defined with Record
Hold set to T (transaction) and releases any outstanding record locks for
the transaction.

In cases (3) through (7) the action of the system at transaction end
depends on the setting of the PIB-LOCK-INDICATOR (described in the
section "PIB-LOCK-INDICATOR ACTION").

The following table summarizes calls that can result in a transaction end.

CALL CALL Type

TIPFCS

FCS-TREN for transaction end, or
FCS-CLOSE for file closing. (However,
FCS-CLOSE for edit buffers, library files,
dynamic files, and TIPPRINT does not
cause transaction end.)

TIPRTN Program termination

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 27

CALL CALL Type

TIPDXC
TIPFORK
TIPFORKW
TIPSUB
TIPSUBP
TIPXCTL

Transfer of Control

PROMPT
PROMPTX
PROMPTX8
TEXT
TEXT80
TIPASK
TIPASKYN
TIPLIST
TIPMSGI
TIPMSGRV
TIPTERM (T-GET)

Terminal Input

PARAM Potential Terminal Input

In general, transaction end causes the release of record locks and the
writing of a "TREN" (mark transaction end) record to the TIP QBL file, if
records were updated in a file that is defined as HOLD=TR.

Deferring Transaction End

A program may defer transaction end and link to another program to
continue processing (see the description of the PIB field PIB-LOCK-
INDICATOR).

Explicit Transaction End

A program may choose to signal an explicit transaction end to occur in
those cases where the program must ensure that all updates made thus
far are committed. See the description of the call to TIPFCS with the
FCS-TREN function.

PIB-LOCK-INDICATOR Action

The following table summarizes the action of the TIP system when it
examines the PIB-LOCK-INDICATOR field:

PIB-LOCK-
 INDICATOR

Transaction
End?

GETUP
LOCKS

UPDATE
LOCKS

ROLLBACK
UPDATES?

space / X'00' Yes Released Released No

O (roll back) Yes Released Released Yes

TIP Programming Reference

28 Proprietary IP-622

PIB-LOCK-
 INDICATOR

Transaction
End?

GETUP
LOCKS

UPDATE
LOCKS

ROLLBACK
UPDATES?

R (release) No Released Kept No

H (hold) No Kept Kept No

Event Action Taken

TRANSACTION
END

Marks a new commit point. File updates are either
committed or rolled back to the previous commit
point.

GETUP LOCK
A record lock that is currently imposed because
the program has issued a GETUP on a record but
has not yet updated the record.

UPDATE LOCK

A record lock that is currently imposed because
the record has been updated by the program and
the record is still held if the file is defined with
Record Hold set to T (transaction).

ROLLBACK
UPDATES

Reverse any file updates since the last commit
point (Transaction End) using information in the
QBL (quick before look) file(s).

PCS Subroutines

PCS subroutine CALLs are summarized here to provide an overview of
the type of facilities that are available through the PCS. The individual
subroutines are described in detail in subsequent sections.

 Subroutine Description

BATPEER
Have a peer-to-peer conversation with a
transaction (from batch).

BATQUEUE
Send a record to a server transaction (from
batch).

TIPBITS
Convert a series of 32 bytes to 32 bits.
 The TIPBITS subroutine enables COBOL
programs to manipulate bit values.

TIPBYTES
Convert a series of 32 bits to 32 bytes.
 The TIPBYTES subroutine enables COBOL
language programs to manipulate bit values.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 29

 Subroutine Description

TIPDATE

Return date in readable format (example:
TUESDAY OCTOBER 18 1988).
 The TIPDATE subroutine returns the date in
expanded format (including day of the week).

TIPDUMP
Cause deliberate dump of transaction linkage
areas. After the dump, the transaction
terminates.

TIPDXC

Transfer control to another transaction
program after the arrival of an input message
from the terminal. TIPDXC enables a program
to transfer control to another program after
XMIT or a function key is pressed.

TIPFLAG

Provide capability to test and/or set up to 32
"flag" bits (switches). The TIPFLAG
subroutine enables transaction programs to
manipulate internal TIP flag bits and use
these flags as semaphores to implement
queuing schemes.

TIPFORK.

Start a transaction program running as an
asynchronous process. TIPFORK enables a
program to initiate another program as an
asynchronous task, thus creating an
independently executing process.
 The independent process runs either: 1) with
a terminal, or 2) as a "background" process
(without a connected terminal).

TIPFORKW

Open a new sub-window under TIP/fe and
start the transaction program running as an
asynchronous process in the new sub-
window.

TIPGRPS

Retrieve elective group membership. The
TIPGRPS subroutine retrieves the names of
the application groups to which the user has
membership.

TIPGRPST
Set elective group membership. The
TIPGRPST subroutine sets the names of the
application groups to which the user belongs.

TIPMSG
Retrieve pre-processed error messages from
the TIP error message file.

TIPPEER
Have a peer-to-peer conversation with
another transaction (like a phone call).

TIP Programming Reference

30 Proprietary IP-622

 Subroutine Description

TIPQUEUE
Send a record to a server transaction (like
leaving a message on a telephone answering
computer).

TIPRTN

Terminate transaction program and return
control to calling program. All TIP programs
use TIPRTN to terminate and return control to
the calling program.

TIPSNAP

"Snap" dump selected portions of program's
memory.
 The TIPSNAP subroutine is used to generate
memory-image "snap" dumps of selective
portions of a transaction program's memory
areas. This subroutine is primarily used for
debugging.

TIPSUB

Invoke a transaction program as a sub-
function. TIPSUB allows a program to
"PERFORM" another program and receive
control when that program is finished.

TIPSUBP Call a subprogram.

TIPTIMER
Delay program execution for a specified
number of seconds.

TIPUSR
Retrieve terminal name where a specified
user is using TIP system.

TIPUSRID Retrieve information about TIP user.

TIPWINAP From TIP/fe, start up a Windows application.

TIPXCTL
"GOTO" another program. Using TIPXCTL, a
program can "GO TO" another program
without any return of control.

BATPEER - Peer-to-Peer from Batch

BATPEER has not been implemented in TIP Studio. For the functionality
found with BATPEER please use the TipAsActiveDTP control to establish
PEER sessions with an application server from an external process.

BATPEER is like TIPPEER but it is invoked by a batch client program. It
implements synchronous two-way communication between a batch
program and a TIP transaction program. The transaction may be
executing on the same or a different TIP system.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 31

A batch client program uses BATPEER for peer-to-peer communication.
(Just as an on-line client transaction would use TIPPEER.)

A server transaction always uses TIPPEER for peer-to-peer
communication. You code the server transaction exactly the same way
as you would with TIPPEER. In fact, you can call the same server
transaction from a batch program or an on-line transaction.

For a discussion of peer-to-peer processing, see TIPPEER.

BATQUEUE - Queuing from Batch

BATQUEUE has not been implemented in TIP Studio.

BATQUEUE is like TIPQUEUE but it is invoked by a batch program. It
implements queuing between a batch program and a TIP transaction
program. The transaction may be executing on the same or a different
TIP system.

A batch program uses BATQUEUE for queuing. (Just as an on-line
transaction would use TIPQUEUE.)

For a discussion of queuing, see TIPQUEUE.

TIPBITS - Convert Bytes to Bits

This subroutine is supplied as a utility for COBOL language programmers
that need to manipulate bits. TIPBITS converts a string of 32 bytes (each
containing a value of 0 or 1) into a full-word (defined in COBOL as 9(9)
BINARY) with the corresponding bits in the full-word set to a zero or one
(X'F0' or X'F1').

The bits in the full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPBITS" USING bit - switches

 byte - switches

bit-switches
The receiving field defined as a binary full-word -
PIC 9(9) COMP SYNC.

byte-switches
The 32 bytes that are to be mapped into bits in the
receiving field. Each byte must contain a zero or one.

Example:

MOVE "11001100110011001100110011001100"

TIP Programming Reference

32 Proprietary IP-622

 TO BYTE- SWITCHES

CALL "TIPBITS" USING BIT - SWITCHES

 BYTE- SWITCHES

The field "BIT-SWITCHES" would contain:

Binary '11001100110011001100110011001100'

Hex 'CCCCCCCC'

TC-BITS

A supplied copy book named TC-BITS defines the two parameters in the
above syntax description. See the description of the TIPFLAG subroutine.

* Define 32 "Bit" Switches *

*

05 BIT - SWITCHES PICTURE 9(9) BINARY SYNC.

*

05 BYTE- SWITCHES.

 10 SWITCH- 31 PICTURE 9.

 88 SWITCH- 31- OFF VALUE 0.

 88 SWITCH- 31- ON VALUE 1.

 10 SWITCH- 30 PICTURE 9.

 88 SWITCH- 30- OFF VALUE 0.

 88 SWITCH- 30- ON VALUE 1.

 10 SWITCH- 29 PICTURE 9.

 88 SWITCH- 29- OFF VALUE 0.

 88 SWITCH- 29- ON VALUE 1.

 10 SWITCH- 28 PICTURE 9.

 88 SWITCH- 28- OFF VALUE 0.

 88 SWITCH- 28- ON VALUE 1.

 10 SWITCH- 27 PICTURE 9.

 88 SWITCH- 27- OFF VALUE 0.

 88 SWITCH- 27- ON VALUE 1.

 10 SWITCH- 26 PICTURE 9.

 88 SWITCH- 26- OFF VALUE 0.

 88 SWITCH- 26- ON VALUE 1.

 10 SWITCH- 25 PICTURE 9.

 88 SWITCH- 25- OFF VALUE 0.

 88 SWITCH- 25- ON VALUE 1.

 10 SWIT CH- 24 PICTURE 9.

 88 SWITCH- 24- OFF VALUE 0.

 88 SWITCH- 24- ON VALUE 1.

 10 SWITCH- 23 PICTURE 9.

 88 SWITCH- 23- OFF VALUE 0.

 88 SWITCH- 23- ON VALUE 1.

 10 SWITCH- 22 PICTURE 9.

 88 SWITCH- 22- OFF VALUE 0.

 88 SWITCH- 22- ON VALUE 1.

 10 SWITCH- 21 PICTURE 9.

 88 SWITCH- 21- OFF VALUE 0.

 88 SWITCH- 21- ON VALUE 1.

 10 SWITCH- 20 PICTURE 9.

 88 SWITCH- 20- OFF VALUE 0.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 33

 88 SWITCH- 20- ON VALUE 1.

 10 SWITCH- 19 PICTURE 9.

 88 SWITCH- 19- OFF VALUE 0.

 88 SWITC H- 19- ON VALUE 1.

 10 SWITCH- 18 PICTURE 9.

 88 SWITCH- 18- OFF VALUE 0.

 88 SWITCH- 18- ON VALUE 1.

 10 SWITCH- 17 PICTURE 9.

 88 SWITCH- 17- OFF VALUE 0.

 88 SWITCH- 17- ON VALUE 1.

 10 SWITCH- 16 PICTURE 9.

 88 SWITCH- 16- OFF VALUE 0.

 88 SWITCH- 16- ON VALUE 1.

 10 SWITCH- 15 PICTURE 9.

 88 SWITCH- 15- OFF VALUE 0.

 88 SWITCH- 15- ON VALUE 1.

 10 SWITCH- 14 PICTURE 9.

 88 SWITCH- 14- OFF VALUE 0.

 88 SWITCH- 14- ON VALUE 1.

 10 SWITCH- 13 PICTURE 9.

 88 SWITCH- 13- OFF VALUE 0.

 88 SWITCH- 13- ON VALUE 1.

 10 SWITCH- 12 PICTURE 9.

 88 SWITCH- 12- OFF VALUE 0.

 88 SWITCH- 12- ON VALUE 1.

 10 SWITCH- 11 PICTURE 9.

 88 SWITCH- 11- OFF VALUE 0.

 88 SWITCH- 11- ON VALUE 1.

 10 SWITCH- 10 PICTURE 9.

 88 SWITCH- 10- OFF VALUE 0.

 88 SWITCH- 10- ON VALUE 1.

 10 SWITCH- 09 PICTURE 9.

 88 SWITCH- 09- OFF VALUE 0.

 88 SWITCH- 09- ON VALUE 1.

 10 SWITCH- 08 PICTURE 9.

 88 SWITCH- 08- OFF VALUE 0.

 88 SWITCH- 08- ON VALUE 1.

 10 SWITCH- 07 PICTURE 9.

 88 SWITCH- 07- OFF VALUE 0.

 88 SWITCH- 07- ON VALUE 1.

 10 SWITCH- 06 PICTURE 9.

 88 SWITCH- 06- OFF VALUE 0.

 88 SWITCH- 06- ON VALUE 1.

 10 SWITCH- 05 PICTURE 9.

 88 SWITCH- 05- OFF VALUE 0.

 88 SWITCH- 05- ON VALUE 1.

 10 SWITCH- 04 PICTURE 9.

 88 SWITCH- 04- OFF VALUE 0.

 88 SWITCH- 04- ON VALUE 1.

 10 SWITCH- 03 PICTURE 9.

 88 SWITCH- 03- OFF VALUE 0.

 88 SWITCH- 03- ON VALUE 1.

 10 SWITCH- 02 PICTURE 9.

 88 SWITCH- 02- OFF VALUE 0.

 88 SWITCH- 02- ON VALUE 1.

 10 SWITCH- 01 PICTURE 9.

 88 SWITCH- 01- OFF VALUE 0.

TIP Programming Reference

34 Proprietary IP-622

 88 SWITCH- 01- ON VALUE 1.

 10 SWITCH- 00 PICTURE 9.

 88 SWITCH- 00- OFF VALUE 0.

 88 SWITCH- 00- ON VALUE 1.

** ** **

* TO C OMPRESS BYTE- SWITCHES INTO BIT - SWITCHES FOR *

* TIPFLAG. *

* *

* CALL 'TIPBITS' USING BIT - SWITCHES, *

* BYTE - SWITCHES. *

* *

** * *

* TO EXPAND BIT - SWITCHES TO BYTE- SWITCHES FOR *

* PROGRAM USE. *

* *

* CALL 'TIPBYTES' USING BIT - SWITCHES, *

* BYTE - SWITCHES. *

* *

*** *

TIPBYTES - Convert Bits to Bytes

This subroutine is supplied as a utility for COBOL language programmers
that need to manipulate bits. TIPBYTES converts a full-word (defined in
COBOL as 9(9) BINARY) into a string of 32 bytes with each byte
containing a 0 or 1 (X'F0' or X'F1') depending on the value in the
corresponding bit in the full-word.

The bits in a full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPBYTES" USING bit - switches

 byte - switches

Where:

bit-switches
The full-word field (defined as PIC 9(9) BINARY) that
contains the bits t hat are to be converted into a byte
representation.

byte- switches
The resulting bytes that are set to a graphic zero or one
(X'F0' or X'F1') depending on the setting of the
corresponding bits in the field BIT-SWITCHES.

Example:

MOVE 118 TO BIT - SWITCHES.

CALL "TIPBYTES" US ING BIT - SWITCHES

 BYTE- SWITCHES

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 35

The field "BYTE-SWITCHES" would then contain the following:

 PIC X(32) '00000000000000000000000001110110'

A supplied copy book named TC-BITS defines the two parameters in the
above syntax description. See the description of the this copy book on
page 32.

TIPDATE - Return Date

This routine returns the date in a readable format. An optional parameter
may be supplied to convert a date other than today's date.

Syntax:

CALL "TIPDATE" USING date - area

 [yymmdd]

Where:

date-area
A 30 character field that receives the date in descriptive
language. Example (English) result: "MONDAY APRIL 11
1988 "

yymmdd
Optional parameter allowing the calling program to supply
a specific date to be translated into readable format. This
field is assumed to be defined as PIC 9(6) with the date in
YYMMDD format (example: 891225).

Example:

05 TODAYS- DATE PIC X(30).

 CALL "TIPDATE" USING TODAYS- DATE

TIPDUMP - Force Program Dump

Call this subroutine to force a program dump at a specific point in the
processing. This method is simpler than the technique sometimes used
by COBOL programmers to force a deliberate program abort - adding
garbage to a packed field.

Syntax:

CALL "TIPDUMP"

There are no parameters.

TIP Programming Reference

36 Proprietary IP-622

All LINKAGE-SECTION areas, PIB, CDA, MCS and WORK are printed in
Hexadecimal and the program terminates.

The dump is contained in the userôs home directory in the file
log.xxxxxxxx where xxxxxxxx is the transaction name.

TIPDXC - Delayed Transfer Control

Call this subroutine to accomplish a delayed transfer of control to another
program. The calling program must specify (in the field PIB-TRID) the
transaction name of the program to receive control. The calling program
then terminates. The called program receives control after the next input
message is available from the terminal.

The calling program's CDA data is copied to the CDA of the next program
for a length which is the least of:

1.1.the size of the calling program's CDA area

1.2.the size of the called program's CDA area

1.3.

Syntax:

CALL "TIPDXC"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program to which control is being transferred.

PIB-TRID
Must be set to the transaction name of the program to
which control is to be transferred.

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-
FOUND

The program identified by the value in the field PIB-
TRID is not defined in the TIP definition, the load
module could not be found, or there was insufficient
memory to load the program. If you receive bad status
and want a more detailed description, use PIB-DETAIL-
STATUS.

See PIB-DETAIL-STATUS in PIB Process Information
Block for more information.

PIB-
The user running the calling program does not have
sufficient security to run the requested program or the

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 37

 PIB-STATUS Meaning

SECURITY requested program is locked at this time of day.

Example:

MOVE "????????" TO PIB - TRID

CALL "TIPDXC"

GO TO ERROR- CALLING- TIPDXC

 Note: The program receiving control will not be scheduled until an input
message is available. The calling program must, therefore, avoid the
pitfall of issuing the call to TIPDXC without having first issued an output
message to permit a subsequent input message to be accepted.

TIPJUMP - Direct Transfer Control

TIPJUMP This call directly transfers control to another program on the
same program stack level. The calling program must move the name of
the transaction to receive control to the PIB-TRID field and then call
TIPJUMP. Only TIP/30 native mode programs may be called using
TIPJUMP.

 Note: This call is unlike all other subroutine calls that PCS provides to transfer
control from program to program because all of the programôs work areas
(PIB, CDA, MCS, WORK) are directly handed to the program that
receives control!

In this special situation, the catalogue entries which pertain to area sizes
for the called program are not relevant and are ignored.

The TIPJUMP call can be viewed as a way for a transaction program to
continue execution using a different load module.

Syntax:

MOVE ô????????ô TO PIB - TRID

CALL ôTIPJUMPô

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-
FOUND

The program is not catalogued, or the load module
could not be loaded, or the field PIB-TID was
erroneously modified by the program prior to calling
TIPJUMP.

If you receive bad status and want a more detailed
description, use PIB-DETAIL-STATUS. See PIB-
DETAIL-STATUS in "PIB ð Process Information
Block" .

TIP Programming Reference

38 Proprietary IP-622

 PIB-STATUS Meaning

PIB-
SECURITY

The user running the initiating program does not
have a high enough security to run the requested
program or the transaction is locked at this time of
day.

TIPFLAG - Flag Services

TIP flag services provides user programs with the ability to manipulate up
to 32 binary switches. These switches (flags) are stored as bits of a full-
word within TIP and may be accessed by any TIP transaction program or
by console operator commands (see the description of operator
commands FLAG, ON, and OFF).

The program may set or clear a flag (set to 1 or clear to 0) or may
interrogate the current setting of a flag or flags. The flags may be used
individually or in combination.

An important feature of this subroutine is the ability for the program to
wait for one or more of the flags to be in a specific state (either off or on)
and then immediately flip the state of the flag or flags. This technique
allows a flag or flags to be used as a semaphore to queue access to an
event.

The TIPFLAG subroutine requires the programmer to provide a MASK
field to identify the subset of the 32 bit flags that are to be manipulated
(either set, cleared, or interrogated). This MASK field may have one or
more bits set on. In most applications, the program is interested in a
single one of the flags and, in such cases, only a single bit in the MASK is
on.

The bits in a full-word are numbered from 31 to 0 from LEFT to RIGHT.

Syntax:

CALL "TIPFLAG" USING function

 mask

 [result]

Where:

function
A character code (0 through 9) representing the function to
be performed by TIPFLAG:
 In the following descriptions, "set" means the value 1;
"clear" means the value 0.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 39

 0 Wait for any of the flag bits identified in the mask to
be set.

 1 Wait for all of the flag bits identified in the mask to
be set.

 2 Wait for any of the flag bits identified in the mask to
be set, then clear the flag bits identified by the
mask.

 3 Wait for all of the flag bits identified in the mask to
be set, then clear the flag bits identified by the
mask.

 4 Wait for any of the flag bits identified in the mask to
be clear.

 5 Wait for all of the flag bits identified in the mask to
be clear.

 6 Wait for any of the flag bits identified in the mask to
be clear, then set the flag bits identified by the
mask.

 7 Wait for all of the flag bits identified in the mask to
be clear, then set the flag bits indicated by the
mask.

 8 Set the flag bits indicated by the mask.
 9 Clear the flag bits indicated by the mask.

mask
A binary full-word that identifies the flags to be acted on by
this call to TIPFLAG. Each bit represents a flag. The bits of
the full-word are numbered from 31 to 0 from left to right.

result
The field that receives a copy of the flag word after the
indicated function is performed.

 An easy way to determine whether a flag (or flags) is on or
off is to specify function code 8 or 9 with a mask that is all
zero (meaning set or clear no flags). The result field after
the call to TIPFLAG provides a "view" of the current setting
of all the flags.

Example:

Assume that a flag bit (say flag 13) is nominated to control access to an
auxiliary printer (or some other "resource"). The basic scheme is:

· if flag 13 is set on, the resource is in use and prospective users of that
resource must wait for it (this is the same as saying wait for the flag to
go to zero!)

· when a program is finished using the resource, the flag must be set to
zero (cleared) so that other programs that are queued waiting for the
flag can be serviced - one at a time.

The following code illustrates the correct method for a program to "queue"
for the resource (by queuing for flag 13 in this case).

WORKING- STORAGE SECTION.

TIP Programming Reference

40 Proprietary IP-622

 ...

 COPY TC- FLAG.

 ...

 01 WORKAREA.

 ...

 COPY TC- BITS.

 ...

PROCEDURE DIVISION ...

 ...

8000 - QUEUE- FOR- DEVICE.

 MOVE 8192 TO BIT - SWITCHES

*

* 8192 (decimal) = 2 ** 13

* 10 0000 0000 0000 (binary)

*

 CALL "TIPFLAG" USING WAIT- ALL- CLEAR- SET

 BIT - SWITCHES

*

* Control will not return til flag 13 i s clear

*

* ...do our thing

*

* when we are finished, clear flag 13 so next

* queued program can get control

*

 MOVE 8192 TO BIT - SWITCHES.

 CALL "TIPFL AG"USING SET- OFF

 BIT - SWITCHES

The program first identifies which of the 32 flags are of interest (MOVE
8192 TO BIT-SWITCHES). The program then calls TIPFLAG with a
function code "WAIT-ALL-CLEAR-SET". This has the effect of pausing
the program until the specified flag is CLEAR and immediately setting the
flag before returning control to the program.

The program performs its function and, when finished, clears the flag to
allow other potential users to "enter the gate". It is important that all
programs which are queuing for flags use this technique to ensure that
only one program at a time is able to acquire control of the flag or flags.

 Note: In the above example, the choice of flag 13 made it quite feasible to move
a number to the full-word and thus obtain the proper bit pattern in the
mask. In practice, COBOL makes it very awkward to move 10 digits to a
binary full-word elementary item. This is exactly the situation that is
addressed by the subroutines TIPBITS and TIPBYTES described earlier
in this documentation.
 Instead of directly moving a value (say 8192 - representing flag 13) to the
mask field, the following technique can always be used:

 MOVE ALL 0 TO BYTE- SWITCHES

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 41

 MOVE 1 TO SWITCH- 13

 CALL "TIPBITS" USING BIT - SWITCHES,

 BYTE- SWITCHES

TC-FLAG Copy Book:

The COBOL copy book TC-FLAG provides a complete set of TIPFLAG
function codes. COBOL programs can make use of the subroutines
TIPBITS and TIPBYTES to convert bits to bytes or vice versa.

Since this copy book uses COBOL VALUE clauses, it must be placed in
the program's WORKING-STORAGE SECTION.

**

* USED AS FUNCTION CODES TO DIRECT TIP FLAG SERVICES *

**

 05 WAIT- ANY- SET PICTURE X VALUE "0".

 05 WAIT- ALL- SET PICTURE X VALUE "1".

 05 WAIT- ANY- SET- CLEAR PICTURE X VALUE "2".

 05 WAIT- ALL- SET- CLEAR PICTURE X VALUE "3".

 05 WAIT- ANY- CLEAR PICTURE X VALUE "4".

 05 WAIT- ALL- CLEAR PICTURE X VALUE "5".

 05 WAIT- ANY- CLEAR- SET PICTURE X VALUE "6".

 05 WAIT- ALL- CLEAR- SET PICTURE X VALUE "7".

 05 SET- ON PICTURE X VALUE "8".

 05 SET- OFF PICTURE X VALUE "9".

TC-BITS Copy Book

The COBOL copy book TC-BITS defines work areas that may be used by
the COBOL program that is manipulating TIPFLAGs. This copy book is
also used in conjunction with the subroutines TIPBITS and TIPBYTES.

This copy book is normally placed in the program's WORKAREA.

TIPFORK - Start Program at a Terminal

Start a program running on another terminal (TIP session) in the network
as an independent, asynchronous process. The program that is started at
another terminal runs independently of the initiating program.

Each TIP session has an associated PIB-TID and PIB-TERM-NAME. The
values can be set by creating terminal definitions with smterm or by using
the environment variable TIPTERM. See smterm in the TIP Utilities
manual for details.

The TIP shell must be running at the target terminal. This means that the
ability to start a program on the target TIP session depends on the
security attributes of the target session and not the security attributes of
the session issuing the TIPFORK. This is a change from TIP/30.

If another program is currently running at the specified TIP session then
the request will be queued (in FIFO order). When the session returns to

TIP Programming Reference

42 Proprietary IP-622

the TIP prompt (no programs are active) then the queued requests will be
run in sequence (one at a time).

This queuing capability (not provided with TIP/30) eliminates one of the
possible error conditions that an application has to deal with.

Before issuing this call, the calling program must:

Á move the transaction-id of the program to be started to PIB-TRID

Á move the 8-character terminal name to PIB-TERM-NAME or move
the 4-character terminal identifier to PIB-TID.

The calling program's CDA data is copied to the CDA of the next program
for a length that is the least of:

Á the size of the calling program's CDA area

Á the size of the called program's CDA area

Á the value specified by the calling program in the field PIB-CDA-
LENGTH.

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 MOVE '????????' TO PIB - TRID

 MOVE '????????' TO PIB - TERM- NAME

 CALL 'TIPFORK'

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started.

PIB-TRID
Must be set to the transaction name of the program that is
to be started

PIB-TID
PIB-TID is a 4-byte field to be compatible with TIP/30.

I f PIB-TERM-NAME contains spaces, LOW-VALUES, or
the caller's terminal name, and PIB-TID contains spaces,
low-values, or the caller's terminal id, the forked program
will run in the background. See TIPFORK - Start
Background Program.

PIB-TERM-NAME
PIB-TERM-NAME defaults to the terminal name that you
are currently signed on to, and you do not need to alter it
during a TIPFORK operation if the PIB-TID field is set
correctly to the terminal to which you would like the
transaction routed.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 43

 The reserved terminal names *BYP and *MST may be
moved to the field PIB-TERM-NAME to start a new
process running on the bypass terminal or master terminal
respectively. The bypass and master terminal can be
examined or modified with the smterm utility.

Example: By Name

*

* START PRINT PROGRAM ON BYPASS TERMINAL

*

 MOVE 'PRINTPGM' TO PIB - TRID

 MOVE '*BYP ' TO PIB - TERM- NAME

 CALL 'TIPFORK'

 IF NOT PIB - GOOD PERFORM REPORT- ERROR

Example: By TID

*

* START PRINT PROG RAM ON BYPASS TERMINAL

*

 MOVE 'PRINTPGM' TO PIB - TRID

 MOVE '*BYP' TO PIB - TID

 CALL 'TIPFORK'

 IF NOT PIB - GOOD PERFORM REPORT- ERROR

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
There is no TIP session with the PIB-TID
(terminal id) or PIB-TERM-NAME.

PIB-SECURITY

The user running the initiating program does not
have sufficient security clearance to run the
requested program or the requested program is
not available because it is locked at this time of
day.

Additional considerations:

1.4.If the transaction (specified in PIB-TRID) does not have a security
entry in any of the active groups at the targeted TIP session,
TIPFORK is successful (it returns PIB-GOOD), but an error
message is displayed on the target TIP session:

 "Invalid transaction code! x xxxxxxx"

 xxxxxxxx is the value of PIB-TRID when TIPFORK was called.

1.5.If the TIP session at the requested terminal does not have security
(permission) to run the requested program then TIPFORK is
successful (returns PIB-GOOD), but an error message is

TIP Programming Reference

44 Proprietary IP-622

displayed on the targeted TIP session:

 Security prevents use of xxxxxxxx

 xxxxxxxx is the value of PIB-TRID when TIPFORK was called.

1.6.On return from the call, the fields PIB-TRID and PIB-TID will be
restored to the values appropriate for the program that issued the
call to TIPFORK.

TIPFORK - Start Background Program

This call starts a specified program running in "background". A
background program is a transaction program that is not associated with
any terminal - essentially a free-standing program. The background
program runs independently of the initiating program.

The calling program's CDA data is copied to the CDA of the next program
for a length that is the least of:

· the size of the calling program's CDA area

· the size of the called program's CDA area

·

As a background process, the program has access to all TIP functions
except those functions that directly solicit input from a terminal.

Background programs are not prohibited from using calls that solicit
terminal input; they are, however, not allowed to actually use the terminal
for input. A background program cannot use input redirection.

A background process is useful for time consuming file processing
operations, for which the user does not require a response.

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 MOVE "????????" TO PIB - TRID

 CALL "TIPFORK"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started in background.

PIB-TRID
The field PIB-TRID must be set to the transaction name of
the program that is to be started in background.

Example:

*

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 45

* START "USERS" TRANSACTION IN BACKGROUND

*

 MOVE "USERS" TO PIB - TRID

 CALL "TIPFORK"

 IF NOT PIB - GOOD

 PERFORM REPORT- ERROR

 END- IF

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-FOUND

The program identified in the PIB-TRID is not
defined in the TIP definition, or the executable
could not be loaded.

There are no resources available.

If you receive bad status and want a more
detailed description, use PIB-DETAIL-STATUS.

See PIB-DETAIL-STATUS in PIB Process
Information Block for more information.

PIB-SECURITY

The user running the initiating program does
not have sufficient security clearance to run the
requested program or the requested program is
not available because it is locked at this time of
day.

Additional Considerations:

1.7.The program issuing the call to TIPFORK will not receive control
until the child process has started running unless an error is
reported.

1.8.The user id of the person running the program is carried forward
into the order of search path of the process being started subject
to the following condition (TIP does this internally):

 BACK$nnn, caller's user id, caller's groups, TIPY

 or

 If the user was defined with:

8.1.1. SEARCH=GROUPS, the search path of the new process
becomes: caller's groups, TIPY

8.1.2. SEARCH=NO, the search path of the new process
becomes: TIPY

TIP Programming Reference

46 Proprietary IP-622

TIPFORKW - Start Program in New Window

TIPFORKW has not been implemented in TIP Studio. For the functionality
found with TIPFORKW prior to issuing the call to TIPFORK change the
PIB-TID field to the name of the terminal you want the program to run on.
This is exactly the way TIP/30 worked.

This call starts a specified program running in a newly created window
under TIP/fe. You must be running TIP/fe to use this.

The calling program's CDA data is copied to the called programôs CDA for
a length that is the smallest of:

Á The size of the calling program's CDA area

Á The size of the called program's CDA area

Á The value specified by the calling program in the field PIB-CDA-
LENGTH.

As a new transaction running with TIP/fe, the program has access to all
TIP/ix functions..

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 MOVE "????????" TO PIB - TRID

 CALL "TIPFORK"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being started.

PIB-TRID
Set this field to the transaction name of the program to be
started.

Example:

*

* START "CREDRPT" TRANSACTION IN A NEW WINDOW

*

 MOVE "CREDRPT" TO PIB - TRID

 CALL "TIPFORKW"

 IF NOT PIB - GOOD

 PERFORM REPORT- ERROR

 END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND The program identified in the PIB-TRID is

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 47

PIB-STATUS Meaning

not defined in the TIP/ix definition, or the
executable could not be loaded.

There are no resources available.

If you receive bad status and want a more
detailed description, use PIB-DETAIL-
STATUS. See PIB-DETAIL-STATUS in

PIB Process Information Block on page
20.

PIB-SECURITY

The user running the initiating program
does not have sufficient security clearance
to run the requested program or the
requested program is not available
because it is locked at this time of day.

Additional Considerations:

Á The program issuing the call to TIPFORKW will not receive control
until the child process has started running unless an error is
reported.

Á The user id of the person running the program is carried forward
into the order of search path of the process being started subject
to the following condition (TIP/ix does this internally):

 caller's user id, caller's groups, TIPY

 or

 If the user was defined with:

Î SEARCH=GROUPS, the search path of the new process
becomes: caller's groups, TIPY

Î SEARCH=NO, the search path of the new process becomes:
TIPY

TIPGRPS - Retrieve Elective Groups

Use this call to retrieve the elective groups to which the user has access.

Syntax:

CALL "TIPGRPS" USING GRPS

Where:

GRPS
A data structure that is described by the following copy
book (TC-GRPS):

TIP Programming Reference

48 Proprietary IP-622

TC-GRPS Copy Book

* ----------------- -- *

* *

* TC - GRPS: FORMAT OF TABLE RETURNED FROM 'TIPGRPS' *

* *

* INPUT: MOVE NUMBER - OF- ENTRIES- WANTED TO GRPS- MAX *

* CALL 'TIPGRPS' USING GRPS. *

* *

* OUTPUT: GRPS - ACTUAL WILL BE THE NUMBER OF ENTRIES RETURNED *

* GRPS- NAME (X) HOLDS THE GROUP NAMES AS THEY *

* APPEAR IN THE ORDER OF SEARCH *

* -- *

 05 GRPS.

 10 GRPS- MAX PICTURE 9999 BINARY.

 10 GRPS- ACTUAL PICTURE 9999 BINARY.

 10 GRPS- NAMES.

 15 GRPS- NAME PICTURE X(8)

 OCCURS 16 TIMES.

Where:

GRPS-MAX
A binary half-word that is set by the calling program to a
value between 1 and 16 (inclusive).

 The value placed in this field specifies the maximum
number of group names that are to be returned. Under
most circumstances, the program requests 16 (the
maximum).

GRPS-ACTUAL
A binary half-word that is set after the call to the number of
group names actually returned by the subroutine.

 This value will not exceed the value provided in GRPS-
MAX.

GRPS-NAME
An array of group names. Only GRPS-ACTUAL of these
will have resultant values. This array corresponds (in one-
to-one order) with the elective groups in the user's current
order of search..

TIPGRPST - Change Elective Groups

This call alters the elective groups to which the current user has access
and, therefore, alters the user's order of search. The alteration is
temporary; the changes remain in effect for the current session or until
the groups are altered again.

The calling program supplies a list of group names that are to be used as
the user's elective groups. After a successful call to this subroutine, the
user's order of search may be changed.

Syntax:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 49

CALL "TIPGRPST" USING GRPS

Where:

GRPS
A data structure that is described by the TC-GRPS copy
book. See TIPGRPS on page 47 for a listing and
explanation of the filed in the TC-GRPS copybook.:

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND

One or more of the suggested group names is not
in the user's groupset(s).

If you receive bad status and want a more detailed
description, use PIB-DETAIL-STATUS. See PIB-
DETAIL-STATUS in PIB Process Information Block
for more information.

New way of handling groups on TIP/as:

To summarize the differences in assigning groups between TIP/30 or
TIP/ix and TIP/as:

Á Independent elective groups from TIP/30 and TIP no longer exist.
Groups are now only assigned to users via the master group set
and logon set.

Á Logon set must be a subset of master group set. This is a new
requirement on TIP Studio that should improve the implementation
and management of group sets. Master group set contains all
groups that a user can ever access. Logon set consists of those
groups that are active when the user starts a session. TIPGRPST
allows a program to modify the active groups to any group in the
master group set.

Additional Considerations:

Á If the first group name contains an asterisk (*), the TIPGRPST
subroutine resets the user's elective groups to the elective groups
defined for the user in the TIP definition.

Á If a supplied group name is spaces, the corresponding group
name in the order of search will be set to spaces (implying "no
group here").

 Warning: The subroutine will make either all of the requested alterations or none of
them. If any of the requested groups names is not within the user's
groupset, the TIPGRPST subroutine will make no changes!

TIP Programming Reference

50 Proprietary IP-622

TIPMSG - Retrieving Error Messages

This function allows your program to retrieve error messages from the TIP
error message file. See the mfm utility in TIP Utilities, ARP-617-00 for a
description of how to create, change, or delete the error file messages.

The discussion of the mfm utility also includes an explanation of edit
codes used in supplying optional variable data that is merged with the
message text (MSGD-TEXT).

Syntax:

CALL "TIPMSG" USING FCS- GET

 MSG- PACKET

 MSG- DATA

 [msg - va riable]

Where:

FCS-GET
Function code from the TC-FCS copy book.

MSG-PACKET
The TIPMSG interface packet from the TC-MSG copy
book.

MSG-DATA
The data record returned by TIPMSG (as outlined in the
TC-MSG copy book.)

msg-variable
If you intend to use variable input in your messages you
must define a MSG-VARIABLE field in your program. See
the discussion of the mfm utility for an explanation of edit
codes used in supplying optional variable data that is
merged with the message text (MSGD-TEXT).

TC-MSG Copy Book

05 MSG- PACKET.

 10 MSG- PACKET- IN.

 15 MSGP- LANGUAGE PICTURE X.

 15 MSGP- PRODUCT PICTURE X(8).

 15 MSGP- NUMBER PICTURE X(6).

 10 MSG- PACKET- OUT.

 15 MSGP- CLASS PICTURE X.

 15 MSGP- FLAGS PICTURE X(4).

05 MSG- DATA.

 10 MSGD- LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE X(2).

 10 MSGD- CONTROL PICTURE X.

 10 MSGD- TEXT PICTURE X(240).

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 51

The layout of TC-MSG closely follows the record layout of the error
messages in the TIP error message file. The following describes fields in
TC-MSG that you may use in your program to supply information to
TIPMSG:

MSGP-LANGUAGE
Specify a national language.
Default: American English.

MSGP-PRODUCT
The product name (for example: TIPIX)

MSGP-NUMBER
Message number (for example: ALL000)

The following describes fields TIPMSG returns to your program:

MSGP-CLASS
The message class as follows:

 space Informational
 C Catastrophic
 E Error
 I Informational
 W Warning
 * Message not found or I/O error on

 TIP error message file.
 > Product name not defined.
 ! Call function illegal (not FCS-GET)
 < Message requires variable data but none

supplied.

MSGP-FLAGS
Application dependent flags

MSGD-LENGTH
The length of the message plus five bytes for header
information (length and print code.)

MSGD-CONTROL
The print control code

MSGD-TEXT
The message text.

Below is an example of an MFM utility screen that displays some of the
data and message text fields that you complete when you add error
messages to the TIP error message file:

T I P / i x - Message File Maintenance TF$MFM1A
 Function: CH
===

Language: A
 Product: TIPIX___

TIP Programming Reference

52 Proprietary IP-622

 Msg-id: 000014 American English
 Class: _ (Information, Warning, Error, Catastrophic)
 Flags: ____ (Application dependent flags)
 Format: ________ (Maintenance screen format name)
 Print-code: _____ (HOME,PSPnn,PSKnn,SPnn,SKnn -
default=Print SPace01)
 Compress?: N (Y=Multiple spaces are removed from
returned message)
 <-----------------M-e-s-s-a-g-e---T-e-x-t------------------>
 <---:----1----:----2----:----3----:----4----:----5----:----6
 Record successfully
updated.________________________________ (60)

___________ (120)

___________ (180)
 <-----------------C-u-r-r-e-n-t---T-e-x-t------------------>
 Record successfully updated.

Date of creation 08/45/84 and last change 93/08/24 < _ >
 F1=Refresh F2=Next Record F6=Delete Msg Wait=Cancel

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-
FOUND

The record
does not exist.

Example of TIPMSG CALL use:

Below is an example of the WORKING-STORAGE-SECTION definitions
and procedures of a COBOL program that retrieves TIP error file
messages:

WORKING- STORAGE- SECTION.

01 ERROR- MESSAGES. COPY TC- MSG OF TIP.

 05 MSG- VARIABLE PICTURE X(80).

RETRIEVE- MESSAGE SECTION.

 MOVE "A" TO MSGP- LANGUAGE.

 MOVE "TIP30" TO MSGP- PRODUCT.

 MOVE "ML1001" TO MSGP- NUMBER.

 MOVE "user id" TO MSG- VARIABLE.

 CALL "TIPMSG" USING FCS- GET

 MSG- PACKET

 MSG- DATA

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 53

 MSG- VARIABLE

 EXIT SECTION.

If you intend to use variable input in your messages you must define a
MSG-VARIABLE field in your program. See the discussion of the mfm
utility for an explanation of edit codes used in supplying optional variable
data that is merged with the message text (MSGD-TEXT).

TIPPEER - Peer-to-Peer Processing

TIPPEER implements synchronous, two-way communication between
two cooperating TIP transaction programs. The transactions may be
executing on the same or different TIP systems.

To initiate a peer-to-peer conversation, a program must supply control
information by altering the contents of its PIB (Process Information Block).
The initiator program sets the PIB-TRID and PIB-LOCAP fields to specify
the transaction program it wants.

You invoke TIPPEER functions with COBOL CALL statements. The
format is similar to that used by TIPFCS. The first parameter is always a
function code. The second parameter is a logical name packet for the
peer-to-peer conversation. The third parameter is a record area.

There are only 4 possible functions used with TIPPEER. They are:
OPEN, CLOSE, GET and PUT. You can use the standard TIPFCS
function codes found in the TC-FCS COPY book (FCS-OPEN, FCS-
CLOSE, FCS-GET and FCS-PUT).

The record is in standard variable-length record format. The first binary
half-word holds the record length (including the 4-byte header), followed
by a two-byte filler, and then the record text.

Normally, the record text should always be valid display data (that is, all
ASCII or EBCDIC characters ð no binary, signed numeric, or packed
decimal fields). The reason for this is that TIPPEER may be maintaining a
conversation between two transaction programs that are executing on
different computers with dissimilar architectures. As TIPPEER passes
records from one system to the other, it translates the contents of each
record to the appropriate character set for the computer receiving the
data.

However, your application can specify an option to the open function to
leave the data ñas is." This would be useful, if the data contained some
binary or packed information. Since TIPPEER does not know the layout of
the data, it must either assume that the entire record is character data
(and translate it), or assume that it contains some non-character data
(and leave the entire record alone).

TIP Programming Reference

54 Proprietary IP-622

Example

05 PEER- PKT.

 10 PEER- NAME PICTURE X(8).

 10 PEER- STS PICTURE X.

05 PEER- RECORD.

 10 RECORD- LENGTH PICTURE 9(4) BINARY S YNC.

 10 FILLER PICTURE XX.

 10 PEER- DATA PICTURE X(length of record).

 CALL "TIPPEER" USING FCS- function,

 PEER- PKT,

 [PEER- RECORD]

TIPPEER Logical Name Packet

Every call to TIPPEER must specify the logical name packet. The logical
packet name contains an application-assigned name for the peer-to-peer
conversation.

The application that is requesting the conversation is the client
application. The client application talks to the server application.

An application may initiate (be the client in) one or more conversations.
However, server applications may only take the server role in one peer-
to-peer session. A server application may in turn initiate other peer-to-
peer conversations. In this case, the server application would become the
client application for the new conversation(s) it initiates.

The actual name placed in the packet is up to the application. It must not
conflict with any other file name that appears in the applicationôs active
file table (AFT). When the server application starts, the TIP system
creates an AFT entry with the name of $PRIMARY. Therefore, the server
application must use the logical name $PRIMARY when referring to the
conversation with its client application.

Record Passing

Within a TIPPEER conversation, both parties must cooperate to produce
an orderly conversation. We all know how chaotic it is when both parties
of a telephone conversation constantly speak without waiting for the other
side to finish. The same is true for a TIPPEER conversation. One side
has to be in receive mode when the other side is in transmit mode. After
your application says something (by issuing a PUT), it should listen (by
issuing a GET).

When the server application is first initiated, it is in send mode. This
means that the first operation it should perform is a PUT function to send
a record back to the client. This record is typically an acknowledgment
record that confirms to the client application that the server has started
successfully and is ready to proceed.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 55

The following table illustrates the logic flow in a typical TIPPEER
conversation:

Client Server

Client application fills in the PIB
and issues a TIPPEER FCS-
OPEN function to establish a
peer-to-peer conversation.

TIP verifies the PIB fields. If the
PIB-LOCAP field contains a
different value than the current
LOCAP, TIP established an link
to the identified LOCAP.

TIP schedules the server program (either locally or remotely based
on the definition of the server program or PIB-LOCAP value).

The client application now
receives control back from the
OPEN request. The application
can check the PIB-STATUS to
determine if any error occurred.

If the open was successful, the
client application would now
issue a TIPPEER FCS-GET and
wait for a record to arrive from
the server.

The server program would begin
execution and perform its start-
up operations.

If the server does not want to
talk, it must terminate by issuing
a TIPRTN function call.

Otherwise, the server program
(which now has the send token)
issues a TIPPEER FCS-PUT
function to send a record to its
client acknowledging that it has
started successfully.

The server program would then
issue a TIPPEER FCS-GET
function to wait for a record from
its client application.

The client program will receive

TIP Programming Reference

56 Proprietary IP-622

Client Server

the record from the server,
process it and will send a record
back to the server.

 The conversation will continue until one side decides to terminate
the conversation.

 Typically, the client will decide that it no longer requires the server
and issues an FCS-CLOSE function on the TIPPEER conversation.

 (If the server wanted to terminate the conversation, it would issue
a TIPRTN function call.)

The client program issues a
TIPPEER FCS-CLOSE to the
connection.

The server program will receive
PIB-EOF status on the GET. At
this point, TIP breaks the
connection with the client. The
server would likely perform its
clean up functions (close files,
etc.) and issue a TIPRTN
function call to terminate.

PIB Fields Used

The TIP Process Information Block (PIB) contains fields that are needed
for peer-to-peer conversations. These fields are:

Field Description

PIB-LOCAP
Optional. This is the name of the TIP system (LOCAP)
where the server application will run. A host computer may
run several TIP systems.

PIB-TRID

This is the name of the server transaction program to be
scheduled. If you do not specify the LOCAP, the PIB-TRID
(transaction ID) will determine which LOCAP will initiate the
server.

PIB-UID
This is the id of the user who is running the application that
is requesting the conversation

PIB-TID
This is the terminal name for the application that is
requesting the conversation.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 57

Request Conversation, OPEN

A client application that wants to initiate a conversation must fill in PIB-
TRID with the name of the transaction program it wants. It may also fill in
the PIB-LOCAP field to make the transaction run on a specific LOCAP. If
the client application changes the PIB-LOCAP, TIP initiates the
transaction on the specified LOCAP. If the PIB-LOCAP does not change,
and the transaction has no alternative LOCAP, then it is initiated on the
local TIP system. If a TIPPEER server wants to reject a session as soon
as it starts, it should call TIPRTN.

The third parameter on the OPEN request is optional. If specified, it
identifies a standard TIP file descriptor packet (TC-FDES). The field
FDES-FCS-PERM within this packet is used to indicate whether
translation is required. If not specified, the default is to translate the data
to the character set of the receiving system. If translation is not wanted,
set FDES-FCS-PERM to ñNò.

Example

03 FILE - DESCRIPTOR. COPY TC- FDES.

 05 PEER- PKT.

 10 PEER- NAME PICTURE X(8).

 10 PEER- STS PICTURE X.

 MOVE ñSERVER1" TO PIB - TRID

 MOVE ñCLIENT1" TO PEER- NAME

 MOVE FCS- PERM- TRANSLATE TO FDES- FCS- PERM

 CALL ñTIPPEER" USING FCS- OPEN

 PEER- PKT

 FILE - DESCRIPTOR

 IF NOT PIB - GOOD

 conversation did not get started ...

 END- IF

Error Conditions

PIB-STATUS Meaning

PIB-NOT-FOUND
The transaction program or the LOCAP is
not available.

PIB-SECURITY
The request did not pass the system security
checks.

PIB-EOF
TIP found the transaction, but it (the server
application) rejected the conversation.

PIB-WRONG-MODE

A logic error occurred. A client program
specified "$PRIMARY" as the file name, or
the open statement contained incorrect
parameters

TIP Programming Reference

58 Proprietary IP-622

PIB-STATUS Meaning

PIB-DUP-AFT
A conversation or file of this name is already
in the AFT.

PIB-NO-MEMORY
The system did not have enough free
memory.

PIB-MISSING-PARAMS Incorrect number of parameters.

Close the Conversation, CLOSE

Only the client application may issue a CLOSE. This will close the
conversation. The server program will get a PIB-EOF status on the next
TIPPEER call, and the TIP system closes the conversation. Issuing the
FCS-CLOSE function will create a commit point for the transaction. This
means that updates done by both the client and the server will be
committed at this point.

Example:

MOVE "CLIENT1" TO PEER- NAME

CALL "TIPPEER" USIN G FCS- CLOSE

 PEER- PKT

Additional Considerations:

· Once the sever application receives control back from the TIPPEER
call (likely from an FCS-GET function) with PIB-EOF status, it is no
longer participating in the same transaction as its client. From this
point forward, the server is running independently from the client and
any further updates it performs are not coordinated with its client
application.

· The server application may terminate the conversation by doing a
CALL "TIPRTN" at any time. However, if the server encounters a
condition that would require it to terminate the TIPPEER conversion, it
should send a ñgoodbyeò record to the client program indicating that
the client should close the connection. The server and the client
programs must agree on the format of the goodbye record. The client
interprets it as a request by the server to terminate the connection.
After sending the goodbye record to the client, the server would issue
an FCS-GET request and wait for the client to terminate the
connection. The server will recognize that the connection has been
broken, because it receives a PIB-EOF status upon completion of the
FCS-GET request.

Send a Record, PUT

To send a record to the other side of a conversation, use the FCS-PUT
function.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 59

You must specify the record length. For example, if you have 10 bytes of
data, you must specify a length of 14. This is because you have to
account for the 2-byte length field and the 2-byte filler.

If you want TIP to perform translation for you, the record must not contain
any binary or packed decimal data. In other words, all data must be ASCII
or EBCDIC characters. TIP will translate the data to the other computer's
character set.

If you specified that you do not want translation (when you opened the
peer-to-peer conversation), the entire record is left óas isô.

Example:

05 PEER- RECORD.

 10 RECORD- LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 PEER- DATA PICTURE X(rec - len).

 MOVE length TO RECORD- LENGTH

 MOVE data TO PEER- DATA

 MOVE "CLIENT1" TO PEER- NAME

 CALL "TIPPEER" USING FCS- PUT

 PEER- PKT

 PEER- RECORD

 IF PIB - GOOD

 ... record sent ok ...

 ELSE

 ... record was not delivered ...

 END- IF

Note: After successfully issuing an FCS-PUT to the TIPPEER
connection, the application must issue an FCS-GET to wait
for a reply, or FCS-CLOSE to end the conversation. In
other words, you cannot issue a FCS-PUT right after an
FCS-PUT.

Receive Record, GET

When an application wants to receive a record it issues a GET request.
The issuing program must set the record length field to the maximum
length (including the 4 byte header) that it can accept. After the GET
function is complete, assuming no error occurred, the length field will
contain the actual length of the record received.

Example:

MOVE maxlength TO RECORD- LENGTH

MOVE "CLIENT1" TO PEER- NAME

CALL "TIPPEER" USING FCS- PUT

 PEER- PKT

TIP Programming Reference

60 Proprietary IP-622

 PEER- RECORD

CALL "TIPPEER" USING FCS- GET

 PEER- PKT

 PEER- RECORD

EVALUATE TRUE

 WHEN PIB- GOOD

 ... record received from other peer ok ...

 WHEN PIB- NOT- FOUND

 ... The application has attempt ed to do two GETs,

 a GET must be followed by a PUT or CLOSE ...

 WHEN PIB- EOF

 ... other peer program closed conversation ...

 WHEN PIB- MSG- AVAIL

 ... record available from local terminal ...

 WHEN OTHER

 ... record was not received, some other error ...

END- EVALUATE

Primary Peer Conversation for the TIPPEER Server

When an application program is scheduled to service a conversation
initiated by a client program, the initial TIPPEER conversation with the
client is already established. The server program does not have to issue
an FCS-OPEN as TIP has already done this as part of the program
initiation function. When TIP creates the TIPPEER connection for the
server program to use, it creates it with the name of $PRIMARY. The
server must use this name when communicating to its client partner.
Since the server did not open the $PRIMARY connection, it should not
attempt to close it. TIP will automatically terminate the conversation when
the server program issues a TIPRTN.

Once initiated, the server application may establish other TIPPEER
conversations if needed. In this case, the server would take on the role of
a client in any new conversations that it may initiate.

Example:

MOVE maxlength TO RECORD- LENGTH

MOVE "$PRIMARY" TO PEER- NAME

CALL "TIPPEER" USING FCS- GET

 PEER- PKT

 PEER- RECORD

EVALUATE TRUE

 WHEN PIB- GOOD

 ... record received from other peer ok ...

 WHEN PIB- NOT- FOUND

 ... The other application passed

 ... "Permission to GET"

 ... This application should only do PUT or CLOSE

 WHEN PIB- EOF

 ... other peer program closed conversation ...

 WHEN PIB- MSG- AVAIL

 ... record available from local terminal ...

 WHEN OTHER

 ... record was not received, some error ...

END- EVALUATE

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 61

Transaction Processing Using TIPPEER

When a client program OPENs a TIPPEER session, and TIP schedules
the server program, the two programs are part of the same transaction.
This means that if either program issues a transaction end (TREN) either
implicitly (for example, with TIPMSGI) or explicitly (with FCS-TREN), then
TIP will secure the updates of both programs. Similarly, if either program
issues a rollback request, then both programs will have their respective
updates rolled back. This situation continues until one of the programs
breaks the TIPPEER connection.

These distributed transaction process capabilities of TIPPEER are in
effect without regard for where the client and server actually execute.
That is, even if the client program is running on one computer and the
server running on another, both programs are part of a single transaction.

TIPQUEUE - Record Queuing

In the previous section, you saw that Peer-to-Peer conversations are bi-
directional, connection-oriented dialogues that occur in real-time between
two cooperating applications. Just like phone calls.

In this section you will learn about TIPQUEUE. Record queuing is a
unidirectional, store-and-forward facility that is not real-time but does
provide for guaranteed record delivery, just like leaving a message on a
telephone answering computer.

The TIPQUEUE protocol is for applications that require client programs to
send records to server programs within a distributed or local TIP
environment. TIPQUEUE provides a connectionless protocol that
guarantees delivery of records from client programs to server programs.

TIPQUEUE allows transaction programs to queue records to named
queues. You use a TIP utility program to define the queues. (In other
words, the queues are defined outside your application.) The queueôs
name is known to the network. Each named queue has a number of
properties that identify attributes of the queue, for example:

Á the LOCAP where the queue is stored

Á the name of the program that services the queue

Á the interval at which the queue server program is scheduled.

A server program is a normal TIP transaction. TIP schedules the server
when the serverôs queue has records in it (and it is the right time to
schedule the server).

All records written to a queue are guaranteed to be delivered to their
respective server. This implies that if the server system is not available
then the local system will retain the records until the server system
becomes available. The server receives records from a queue in the
same order the client wrote them (FIFO).

TIP Programming Reference

62 Proprietary IP-622

The writing of a record to a queue is part of a transaction and the reading
of a record from a queue is also part of a transaction. If the transaction is
aborted, or the system stops before a record has been committed to a
queue, then the TIP recovery subsystem (that is, rollback) restores the
queue to a point of consistency.

Client applications can send records to server applications via a named
queue. Each named queue defined in a TIP system is bound to one
server application. That is, there is a one-to-one mapping between queue
names and server names. The servers are simply transaction programs
that are defined in the TIP environment.

Local and Remote Queues

Every TIP system has a local TIPQUEUE repository where records are
held until they can be processed. When a queue is defined to be serviced
locally, the identified server program is scheduled at the appropriate time
to process the queued records. If, however, the queue is defined to be
serviced remotely, the queued records must be transferred to the remote
TIP system. Once the records have been transferred and stored in the
remote TIPQUEUE repository, then the appropriate server will be
scheduled, in that TIP system, to process the records.

The following diagram illustrates this record flow:

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 63

The lifetime of records queued using TIPQUEUE is as follows:

Á The records that a client application writes to a named queue
(using FCS-PUT), are committed to the local queue when the
application establishes a commit point. Clients can send records
to a queue that is defined on the same LOCAP as the clients or on
a remote LOCAP (this is transparent to the application program).

Á When the client program has reached a commit point (TREN) and
it has written records to the queue, it will schedule a server
program.

Á If the queue is defined to be serviced locally, the server is
scheduled. The queue definition determines whether the server is
scheduled immediately or on a timed basis.

Á If, however, the queue is defined to be serviced on another TIP
system, then a special server program is scheduled. This special
server is part of the TIP system and is designed to move the
queued records from the local TIP system to the remote one. It

TIP Programming Reference

64 Proprietary IP-622

does this by establishing a TIPPEER conversation with a partner
program on the remote TIP system and transferring the records to
it. The partner program writes the records to the remote queue (its
local queue). When the partner program comes to a commit point,
that TIP system will go through the same process as identified
above to schedule a local server program.

Á When the server program is scheduled, it OPENs the queue (as
an input file) and processes the queued records. When the server
application establishes a commit point, the records that it has read
from its queue are deleted from the queue.

The administrator must set the delivery interval to be large enough to
allow all the queued records to be delivered within the allocated time.
Even if the send status of the queue is CLOSED, all the records that have
already been queued for a particular queue will be delivered to their
destination, subject to the constraints of the delivery time.

 Note: Once a server starts, any change in its service status (time interval, time
lock, and so on) will not affect its operation. It will only be affected the
next time it is scheduled.

TIPQUEUE Service Time Schedule

You use the queue definition utility to specify the service time schedule.

The timelock values you specify when you define the queue control when
data is serviced, and when data is transferred between TIP systems.
There are two cases when defining a queue: a locally serviced queue,
and a remotely serviced queue. The following paragraphs deal with each
case.

For a locally served queue, the timelock values determine when (in 24-
hour format) the queue is locked. TIP does not schedule the server when
the queue is locked. For example, if you want the queue serviced
between 5pm and 11pm, specify the timelock as 23:00 to 17:00.

For a remotely serviced queue, the timelock value specifies the portion of
the day (in 24-hour format) during which the queue is locked. If a remotely
serviced queue is locked, the data is not transferred to the remote TIP
system. For example, if you want to transfer a queue over a phone line,
and you want to do it from 11pm to 6am when the rates are lower, specify
the timelock values as 06:00 to 23:00. At 11pm TIP unlocks the queue,
and starts to transfer the records. As the records are transferred to the
remote TIP system and written the queue on that system, the server will
be scheduled according to the queue definition on that TIP system

You can use the SMQUE utility to mark a queue as CLOSED or HELD. If
a queue is CLOSED, the server will still service records at the appropriate
times. However, applications cannot write new records to a CLOSED
queue. The state of the queue is only checked during the FCS-OPEN
function call. If the queue is closed, the TIP program will receive an error
when it attempts to open the queue.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 65

If a queue is marked HELD, then no server will be started to process or
transfer the records. Client programs can continue to write new records to
the queue (assuming it is not closed). The queue will not be serviced until
the HELD status is removed.

If the destination LOCAP is down when the delivery time takes effect, the
records are saved until the destination LOCAP comes back up again.
Then the records are transferred.

TIPQUEUE Interface (API)

You call the API with COBOL óCALLô statements. The first parameter will
always be the function code, the second parameter will be the logical
queue name packet, and the third parameter will be a record buffer (only
used on GET and PUT functions).

Example:

05 QUEUE- RECORD.

 10 RECORD- LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 RECORD- DATA PICTURE X(rec - len).

05 QUEUE- PKT.

 10 QUEUE- NAME PICTURE X(8).

 10 QUEUE- STS PICTURE X.

 CALL ñTIPQUEUEò USING FCS- func,

 QUEUE- PKT,

 QUEUE- RECORD

The queue name that an application uses must already be defined in the
TIP catalogue. You can also use the TIP catalogue to direct a logical
queue name to the real queue name.

A queue server program that is initiated due to the arrival of a record on
the queue will be passed the name of the queue to open in the CDA as
parameter 1. The server program must use this name to identify the
queue it is to service.

Open the Queue - FCS-OPEN

Before an application can use a queue, it must issue a successful OPEN
function for the queue it wants to use. Client applications use the simple
(two-parameter) format of the open function.

However, server applications, must specify a third parameter on the FCS-
OPEN function. This parameter is a standard TIP file descriptor packet
(defined by the TC-FDES copy module) and must have the read-only
indicator set (FDES-FCS-PERM set to FCS-PERM-READONLY - this
value is declared in the TC-FCS copy module).

Example - Opening a queue as a client:

MOVE ñQUEUE1ò TO QUEUE- NAME

TIP Programming Reference

66 Proprietary IP-622

CALL ñTIPQUEUEò USING FCS- OPEN

 QUEUE- PKT

IF NOT PIB - GOOD

 ... queue is not valid ...

END- IF

Example - Opening the queue as a server:

 03 FILE - DESCRIPTOR. COPY TC- FDES.

MOVE CDA- PARAM (1) TO QUEUE- NAME

MOVE FCS- PERM- READONLY TO FDES- FCS- PERM

CALL ñTIPQUEUEò USING FCS- OPEN

 QUEUE- PKT

 FILE - DESCRIPTOR

IF NOT PIB - GOOD

 ... queue is not valid ...

END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-CLOSED
The queue is closed. Records cannot be
queued

PIB-NOT-FOUND
The specified queue does not exist in the
network

PIB-MISSING-PARAM Wrong number of arguments passed.

Additional Considerations

Á When the TIP system schedules the queue server, it passes the
name of the queue in the CDA as parameter 1. The server should
use this name when attempting to open the queue. You can
manually schedule the queue server from a command line, by
entering the transaction code for the server with the queue name
as parameter 1.

Á transact quename

Á This is often convenient for testing or for situations where you
want to run the server immediately, but the normal definition of the
queue will not automatically schedule the server for some time.

Closing a Queue - FCS-CLOSE

When an application wants to stop processing records or is terminating, it
should issue the FCS-CLOSE function to close the queue.

Example:

CALL ñTIPQUEUEò USING FCS- CLOSE

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 67

 QUEUE- PKT

IF NOT PIB - GOOD

 ... queue is not valid ...

END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-FUNCTION The program has no associated named queue.

PIB-MISSING-
PARAM

Wrong number of arguments passed.

PIB-HELD
A lock cannot be obtained on the control record for
the queue file. Currently TIPQUEUE waits up to 30
seconds for a lock, after that it returns PIB-HELD.

Write a Record to a Queue - FCS-PUT

When a client application wants to send a record to a named queue, it will
use the FCS-PUT function. Sending a record to a queue is an
asynchronous activity, that is, the call returns as soon as the TIPQUEUE
system has accepted the record. The record will only be queued for
delivery after the client program has committed the record (via FCS-
TREN). Thus any records which are put into the TIPQUEUE system since
the last commit point can be rolled back.

You must specify the record length (4 or greater). The record itself should
not contain any binary or packed decimal data. All data must be valid
ASCII or EBCDIC characters.

The queue name may be a logical name that is further defined in the TIP
catalog.

Example:

05 QUEUE- RECORD.

 10 RECORD- LENGTH PICTURE 9(4)

 BINARY SYNC.

 10 FILLER PICTURE XX.

 10 RECORD- DATA PICTURE X(rec - le n).

05 QUEUE- PKT.

 10 QUEUE- NAME PIC X(8).

 10 QUEUE- STS PIC X.

 ...

 MOVE LENGTH TO RECORD- LENGTH

 MOVE DATA TO RECORD- DATA

 MOVE ñWRKQUEò TO QUEUE- NAME

 CALL ñTIPQUEUEò USING FCS- PUT

 QUEUE- PKT

TIP Programming Reference

68 Proprietary IP-622

 QUEUE- RECORD

 I F PIB - GOOD

 ... record qu eued OK ...

 ELSE

 ... record was not queued ...

 END- IF

Error Conditions

PIB-STATUS Meaning

PIB-MISSING-PARAM Wrong number of arguments passed

PIB-EOF You cannot send records of 0-length

PIB-OVERFLOW
You cannot send records of more than
32,767 bytes in length.

PIB-FUNCTION A system error occurred.

PIB-HELD

A lock cannot be obtained on the control
record for the queue file. Currently
TIPQUEUE waits up to 30 seconds for a
lock, after that it returns PIB-HELD.

Get a Record from the Queue - FCS-GET

The server application may receive records from its corresponding named
queue using FCS-GET. If no records are available on the queue, the
program will receive PIB-EOF status.

When receiving records, the server application must specify the maximum
record size and have a work area that is large enough to receive the
record. If the record received is larger than the maximum size specified
by the server, then TIP does not retrieve the record from the queue, but
sets the PIB-STATUS to PIB-OVERFLOW.

The reception of a record is part of a transaction. TIP removes the record
from the queue when the server establishes a commit point. To push any
records received since the last commit point back into the queue, do a
rollback.

Example:

MOVE maxlength TO RECORD- LENGTH

CALL ñTIPQUEUEò USING FCS- GET

 QUEUE- PKT

 QUEUE- RECORD

EVALUATE TRUE

 WHEN PIB- GOOD

 ... record received from client OK ...

 WHEN PIB- EOF

 ... no records available ...

 WHEN other

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 69

 ... record was not received, - check pib status

END- EVALUATE

Upon return, record-length will contain the actual size of the record
received.

Error Conditions

PIB-STATUS Meaning

PIB-OVERFLOW
Record received is larger that the user's
record area.

PIB-MISSING-PARAM Wrong number of arguments passed.

PIB-EOF You cannot receive records of 0-length.

PIB-FUNCTION A system error occurred.

PIB-HELD

A lock cannot be obtained on the control
record for the queue file. Currently
TIPQUEUE waits up to 30 seconds for a
lock, after that it returns PIB-HELD.

Developing Client-Server Applications

Once a client starts writing records to a queue, or a server starts reading
records from a queue, TIP maintains record locks on the queue file until
the client reaches a commit point. (See Transaction end.)

When designing an application that uses TIPQUEUE, you should try to
minimize the interval over which records are locked. This is especially
true if several users run a program that writes to a given queue or if
several different programs write data to the same queue.

Server programs usually want to run until they have processed all the
records in the queue that they are servicing. Records that have been read
from the queue are not removed from the queue until transaction end
time. Therefore, as a server program is reading the queue, it should
create commit points (by issuing FCS-TRENs) at the appropriate time.
Otherwise, all the records read from the queue, and any other records
updated in files, remain locked until the transaction comes to a commit
point.

When an application issues a call to TIPQUEUE with a function code of
 FCS-PUT, FCS-GET, or FCS-CLOSE, a lock is requested on the control
record for the queue file. This lock is not relinquished until a commit point
has been reached in the transaction. This is necessary to allow queue
updates to be coordinated with updates on data files and to allow for the
possibility of rollback.

If a lock cannot be obtained on the control record for the queue file, these
functions (FCS-PUT, FCS-GET, and FCS-CLOSE) fail. Currently

TIP Programming Reference

70 Proprietary IP-622

TIPQUEUE waits up to 30 seconds for a lock on the control record and
after that time it returns PIB-HELD.

To minimize contention for the control record:

Á Queues can be assigned to separate queue files. This is
recommended for heavily used queues. By default queues are
assigned to the file TIP$QUE.

Á Keep transaction intervals to a minimum. Issuing an FCS-PUT to
a queue and then holding record locks while waiting for screen
input (by moving "H" to PIB-LOCK-INDICATOR) is not
recommended. Other transactions are unable to write to the
queue file while the record lock on the queue control record is
outstanding.

The best application strategy is to perform all necessary screen
interaction then issue file and queue updates.

A server program can also act as a client by not only receiving records,
but also sending records to named queues. That is, a server can receive
records, perform some preliminary processing on them, and then send
them to another queue for more processing by another server.

TIPRTN - End Online Program

This call terminates an online TIP program.

If the terminating program was running in background, TIP simply de-
allocates all of the areas of memory that were assigned to the program
and marks the background process table available. Background
programs, by definition, have no program to return to.

If the terminating program was running in foreground (at a terminal)
control returns to the program that called the terminating program.

If the terminating program was executed from the TIP command line,
control returns to the TIP Command Line Processor.

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 CALL "TIPRTN"

Where:

PIB-CDA-LENGTH
The program may move a value to this field to control the
number of bytes of data in the CDA that can potentially be
copied to the CDA of the program that is next to receive
control.
The number of bytes that are copied to the next program's
CDA is computed as the least of the values in the field PIB-
CDA-LENGTH in the PIB of each of the two programs

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 71

involved.
For example, a program that has used the CDA more or
less as a work area and does not wish to return any data to
the calling program can move zero to PIB-CDA-LENGTH.
In that case, the calling program's CDA will remain intact.

Error Conditions:

There is no return of control after a call to TIPRTN.

Additional Considerations:

Á The contents of the CDA are copied back to the calling program
(unless the terminating program is running in background).

Á The terminating program may place a value in the field PIB-RPG-
UPSI to return information to the calling program. This facility is
primarily intended to be used in situations where some sort of
exceptional status is to be returned to the calling program (and
requires the two programs to agree on some sort of convention
governing the contents of that field).

TIPSNAP - Snap Dump Memory

This subroutine allows a program to produce "snap" dumps of various
sections of memory. The specified locations of memory are displayed in a
report that is output to a file named "log.xxxxxxxx" where "xxxxxxxx" is
replaced by the name of the transaction that invoked TIPSNAP.

Syntax:

CALL "TIPSNAP" USING bgn- 1 end - 1

 [bgn - 2 end - 2]

 [bgn - 3 end - 3]

 [bgn - 4 end - 4]

Up to four pairs of parameters may be passed; each pair represents the
starting and ending location of an area of memory that is to be dumped.

Example:

CALL "TIPSNAP" USING WORK- AREA END- WORK

 MCS END- MCS

 Additional Considerations:

Á This call is useful when debugging programs but should be
removed when placing a program in production.

Á If the call is made using:

CALL "TIPSNAP" USING MCS WORK - AREA

The call will still occur but you may not get the contents of the
snap. This is because TIP startup code uses UNIX MALLOC and

TIP Programming Reference

72 Proprietary IP-622

each area is allocated separately. It could be that the MCS and
WORK-AREA may not be contiguous. If this happens, try using:

CALL "TIPSNAP" USING MCS END - MCS

where END-MCS is a field in the MCS area

Á Micro Focus COBOL compiler directive "REF" should allows a
programmer to correlate an address found in the TIPSNAP dump
back to an address within the application program. This can speed
up debugging time by allowing the programmer to find exact
locations in the dump much faster than trying to progress it
manually.

Note: Inglenet does not release the "make.mf" file with this option
turned on since it does make the listing much larger than
usual.

TIPSUB - Perform Program

This call invokes another transaction program as if it was a subroutine of
the calling program. The calling program is suspended while the called
program executes. The called program may call another program, and so
on, to a maximum of 16 nested calls. When a called program terminates,
control returns to the calling program.

The classic example of the use of a facility such as TIPSUB is a program
that offers a menu or choice of several other programs. Typically, a
screen format is displayed that offers the terminal operator a number of
choices of application systems.

Once the user has indicated his choice and the selection has been
validated, the program calls TIPSUB to invoke the main transaction of the
application subsystem.

When the application subsystem terminates, control returns to the original
program, which repeats the cycle.

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 MOVE "????????" TO PIB - TRID

 CALL "TIPSUB"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is to be invoked.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 73

PIB-TRID
Must be set to the transaction name of the program that is
to be invoked.

If TIP Distributed Transaction Processing is configured, the program may
move a LOCAP name to the field PIB-TID to indicate to the TIPSUB
subroutine that the program that is to be performed is to execute on the
LOCAP name specified.

The contents of the CDA of the calling program are copied to the CDA of
the called program, to serve as the called program's initial CDA contents.
On return from the TIPSUB call, the CDA contents of the called program
are copied back to the CDA of the calling program.

The calling program's CDA data is copied to the CDA of the next program
for a length which is the least of:

Á the size of the calling program's CDA area

Á the size of the called program's CDA area

Á the value specified by the calling program in the field PIB-CDA-
LENGTH.

Example 1:

MOVE SPACES TO CDA

MOVE "PAYUP" TO PIB - TRID

CALL "TIPSUB"

IF NOT PIB - GOOD

 PERFORM ERROR- ON- SUB

END- IF

Example 2:

* Perform "ACCTSUMM" t xn on oth er LOCAP *

MOVE "PROD" TO PIB - TID

MOVE "ACCTSUMM" TO PIB - TRID

MOVE SPACES TO CDA

CALL "TIPSUB"

IF NOT PIB - GOOD

 PERFORM ERROR- ON- SUB

END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND

The program is not defined, the load
module could not be loaded or the size of
the load module and required areas
(CDA, WORK-AREA, MCS, etc.) is too
large for available memory.

If you receive bad status and want a
more detailed description, use PIB-

TIP Programming Reference

74 Proprietary IP-622

PIB-STATUS Meaning

DETAIL-STATUS. See PIB-DETAIL-
STATUS in PIB (Process Information
Block).

If the field PIB-TID was set to a different
LOCAP name before the call to TIPSUB,
this error condition is reported if the
specified program is not found at the
other LOCAP or (in the extreme case) the
LOCAP name itself is not valid or a
connection cannot be made with the
LOCAP.

PIB-SECURITY

The user running the initiating program
does not have high enough security to
run the requested program or the
requested program is locked due to the
time of day.

PIB-PROG-ABEND

The called program aborted (program
checked) during execution. In this case,
PMDA is called on behalf of the called
program and when PMDA has finished
processing, control returns to the calling
program with this error status.

If the calling program receives PIB-
PROG-ABEND status, the contents of the
CDA are undefined (since PMDA uses
the CDA as a work area).

Calling TIP Utilities

This section describes the procedures that must be followed when a user-
written transaction program calls a utility transaction supplied with the TIP
system.

The transaction programs that are supplied with the TIP system are
written on the assumption that the programs are executed directly from
the TIP command line (there are some minor exceptions to this general
statement).

To successfully call these utilities, it is necessary for the calling program
to carefully arrange the contents of the CDA to contain any needed
parameters in exactly the same format as the data would appear if the
transaction was called from the TIP command line.

In the following examples, it is assumed that the calling program defines
the first 152 bytes of the CDA area using the supplied Copy book TC-
CDA. Although the examples illustrate the use of TIPSUB to call the TIP

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 75

utilities, other methods of transferring control (TIPXCTL, TIPFORK, etc.)
may be used if appropriate.

Example:

To run the standard ñWHOSONò TIP utility from the command line, the
user would enter the following:

TIP?ƷWHOSON

The user-written program calls the transaction in this manner:

MOVE SPACES TO CDA

MOVE "WHOSON" TO PIB - TRID

CALL "TIPSUB"

 IF NOT PIB - GOOD ...

END- IF

TIPSUBP - Call a Subprogram

TIPSUBP provides a way to emulate TIP/30ôs CALL ñTIPSUBPò, and
IMS/90ôs CALL ñSUBPROGò features.

Syntax:

MOVE "????????" TO PIB - TRID

CALL "TIPSUBP" USING parameters

Where:

PIB- TRID
Must be set to the name of the subroutine to be invoked.

TIP/30 supports CALL ñTIPSUBPò and IMS/90 supports CALL
ñSUBPROGò. Both of these calls allow transaction programs to call
separately compiled subroutines. TIP/30 loads these subroutines into
memory at system startup. This avoids having to re-compile applications
when the subroutines change and saves memory by loading the
subroutine only once.

A TIP/30 or IMS/90 application moves the subroutine name to PIB-TRID,
then issues CALL ñTIPSUBPò USING <parameters>.

On UNIX the appropriate method is to use ñshared librariesò. On UNIX all
executables are automatically shared and re-compilation time is very fast.
Because of the protected memory spaces on UNIX it is not possible to
jump from one application address space into another so the
implementation of TIPSUBP and SUBPROG under TIP must be quite
different.

TIP Programming Reference

76 Proprietary IP-622

Compile COBOL Subroutines

Compile your COBOL subroutines so that they can be used in a shared
library. For details, see your COBOL vendorôs documentation.

Add Subroutines to Library

All subroutines that may be invoked via TIPSUBP, must be compiled into
object module format, and added into a normal UNIX archive library
(using the UNIX ar command).

The library should at least hold all the subroutines that would be used by
a particular group of transaction programs.

For details on how to create a shared library, see the documentation for
your UNIX system. Unfortunately, these details tend differ for each
version of UNIX.

Create TIPSUBP or SUBPROG

Once the library is created, use genmain to scan the library and construct
a specific version of TIPSUBP (or SUBPROG) for that library. TIP
modules and IMS modules must be kept in separate libraries:

For TIP:

genmain - S library .a

For IMS:

genmain - iS imslib.a

Where -S is the option to create TIPSUBP (or SUBPROG) and put it into
the specified archive library.

Linking and Executing

The updated library may be used to link (ld) applications, which will
invoke the subroutines via TIPSUBP.

Alternatively, the library could be converted into a shared library and then
used when compiling, linking and executing the transaction programs.

Error Conditions:

Currently, none are returned.

TIPTIMER - Timer Services

This function allows the user program to pause for a specific length of
time. An on line program may choose to delay its execution for a variety
of reasons:

· To wait for an input message from the terminal

· To allow other users of the system access to the processor (to avoid
monopolizing the processor)

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 77

· To wait for a specific number of seconds for some application related
reason.

Syntax:

CALL "TIPTIMER" USING wait - time

 [time - status]

 [preview]

Where:

wait-time
A binary full-word (PIC S9(9) BINARY) that specifies the
number of seconds that the issuing program wishes to
wait. This parameter is required.

 TIP does not modify this field. If appropriate, it may be
coded as a constant in the WORKING-STORAGE section
of a COBOL program.

 The program is reactivated when the specified number of
seconds has elapsed, or an input message is available.

 A value of zero in this field implies that the program does
not wish to delay but is willing to relinquish control of the
processor if some other process in the TIP system is ready
to run.

 Processes that would otherwise monopolize the system
should periodically delay with a WAIT-TIME of zero.
Candidates are processes that perform:
Ã CPU intensive activities

Ã Prolonged periods of sequential file reading.

Note: TIP cannot provide TIMER services with accuracy better
than one second. The program is delayed at least the
number of seconds that is specified.

 If wait-time is set to a negative value, the value of the
system parameter TIMEOFF in the tipix.conf file will be
used as the time to wait. Since TIMEOFF is specified in
minutes and TIPTIMER expects a value in seconds TIP
calculates the default wait-time as (TIMEOFF * 60).

 This is useful when a site would like to implement a
standard wait time in their programs. If this technique is
used then the wait time is easily altered by adjusting the
TIMEOFF system parameter. For programs that must
operate on both TIP and TIP/30 the value supplied (to
request the default waittime) must be -1.

 The following technique may be used by programs which
wish to "wake up" at a specific time of day:

TIP Programming Reference

78 Proprietary IP-622

 Obtain the current time of day from the operating system
(the COBOL verb "ACCEPT" is handy for this).

 Compute the number of seconds between the current time
of day and the desired wake up time (taking into account
possible day changes).

 Issue a TIPTIMER call to wait for the computed number of
seconds.

 Be careful not to compare exactly for a specific time of day!
It is better to check for a "greater than or equal to"
condition to avoid missing the exact time.

 Another method for getting scheduled at certain time of
day is to use the TIPQUEUE facility. Define a "queue"
which is to schedule the transaction even if there is no
data in the queue at a certain time of day.

time-status
This parameter is optional and may be omitted if the next
parameter is also omitted.

 A one-byte status code that is set by the TIPTIMER
subroutine to indicate the reason the program was
reactivated. This result status is also returned in the field
PIB-STATUS

PIB-MSG-AVAIL
An input message is available (the requested time
has not elapsed).
Á When this status is returned to the program, the

program has an input message available. The
normal course of action is to use one of the TIP
subroutines (example: TIPMSGI, PARAM, etc.)
to read the input message.

Á An input message may have been the result of
the terminal user pressing the XMIT key, a
function key or the MSG-WAIT key.

PIB-TIMED-OUT
The specified number of seconds has elapsed and
no input message is available

 The two status codes are mutually exclusive. Only
one of the two possible events can occur.

preview

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 79

 This parameter is an optional 12-byte field into which TIP
places the first 12 bytes (converted to status was
returned). The contents of this field are not defined if
TIPTIMER returns a status of "PIB-TIMED-OUT".

Example:

05 TIMER- WAIT PICTURE S9(9)

 BINARY.

05 TIMER- STATUS PICTURE X.

 ...

 MOVE +60 TO TIMER- WAIT

 CALL "TIPTIMER" USING TIMER- WAIT

 TIMER- STATUS

In this example, TIP suspends execution of the program for approximately
60 seconds or until an input message from the terminal is available.

If a message arrives, TIMER-STATUS contains "M" (PIB-MSG-AVAIL).

Calling TIPTIMER does not cause the TIP system to examine (or alter)
the setting of the PIB-LOCK-INDICATOR.

 Warning: Calling TIPTIMER with a wait time of 60 seconds or less does not cause
the TIP system to release any file system record locks acquired by the
process. This means that a process may delay for up to 60 seconds while
locking records.

If a program that has locked one or more records calls TIPTIMER with a
delay time exceeding 60 seconds, TIP aborts the program with the reason
code: "Resources locked, waiting TIPTIMER".

TIP Programming Reference

80 Proprietary IP-622

TIPUSR - Where is User

This subroutine is called to return the name of the terminal where a
specified TIP user is located. The subroutine searches for the specified
TIP user on the system and returns the terminal name of the first location
where that user is logged on.

Syntax:

CALL ôTIPUSRô USING USER- PKT

Where:

USER-PKT
A group item in the program's work area where the user
name is specified and the terminal name is returned.

The layout of the area is illustrated in the example that follows.

Example:

05 USER- PKT.

 10 USER- NAME PICTURE X(8).

 10 USER- TERM PICTURE X(4).

 ...

 MOVE SPACES TO USER- PKT.

 MOVE ôALLINSONô TO USER- NAME.

 CALL ôTIPUSRô USING USER- PKT.

 IF USER - TERM = SPACES

 GO TO USER- NOT- ON.

Additional Considerations:

Á If the specified user is not found on the system, the terminal name
in the packet is set to spaces.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 81

TIPUSRID - User Information

TIP programs use this call to retrieve information about a specified TIP
user id. Information on the elective groups that the user belongs to and
the comment from the user's TIP definition record are returned.

Syntax:

CALL "TIPUSRID" USING userid - DATA userid userid

Where:

user id-DATA
A group item in the program's work area where the result
information is returned. The layout of the area is illustrated
in the example that follows. The information returned
includes the first two elective groups and comment
information that is in the user's TIP definition.

user id
An eight-character field containing the user id to be used in
the search for information.

Example:

05 userid - DATA.

 10 userid PICTURE X(8).

 10 USER- GRP1 PICTURE X(8).

 10 USER- GRP2 PICTURE X(8).

 10 USER- CMT PICTURE X(30).

...

 MOVE "ALLINSON" TO userid

 CALL "TIPUSRID" USING userid - DATA

 userid

 IF NOT PIB - GOOD

 GO TO USER- DOESNT- EXIST

 END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
The specified user id is not defined. The
result area is cleared to spaces when this
error condition occurs.

 Additional Considerations:

Á As shown in the example, the second parameter may safely be
included in the area reserved for the result.

TIP Programming Reference

82 Proprietary IP-622

TIPUSRST ï Set new User Information

TIP programs use this call to change the active TIP user id.

Syntax:

CALL "TIPUSRST" USING new- user

Where:

New-user
A group item in the program's work area with the new user-
id and password (if required). The format of the area is
illustrated in the example that follows.

Example:

05 new- user .

 10 user - id PIC TURE X(8).

 10 Pass - Word PICTURE X(8).

...

 MOVE "ALLINSON" TO user - id

 MOVE ñSecretò TO Pass- Word

 CALL "TIPUSR ST" USING new- user

 IF NOT PIB - GOOD

 GO TO USER- DOESNT- EXIST

 END- IF

Error Conditions:

PIB-STATUS Meaning

PIB-NOT-FOUND
The specified user id is not defined. The
result area is cleared to spaces when this
error condition occurs.

PIB-SECURITY
The password did not match or the new
userid has higher TIP security that the
current userid.

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 83

TIPWINAP - Run a DOS or Windows Program

TIPWINAP has not been implemented in TIP Studio. For the functionality
found with TIPWINAP please use the CreateProcess WIN32 call to start a
"windows application".

This call can only be used with TIP/fe and with MCS running in SMART
mode. After the call, TIP/fe will start up the desired program. If TIP/fe for
Windows is being used, the program will run asynchronously to TIP/fe.

Syntax:

CALL "TIPWINAP" USING cmdline

Where:

Cmdline
Specifies the name of the DOS/Windows program to run.
This buffer must be 80 bytes long.

When running the DOS version of TIP/fe, a program will be started up
only if enough memory is available. Windows TIP/fe will not run DOS
.com programs.

TIPWINAP will use the DOS PATH environment variable to find the
executable to run if no path is specified.

Example:

MOVE 'ff c: \ config.sys' TO COMMANDLINE

CALL 'TIPWINAP' USING COMMANDLINE

If 'ff' is in the path, it will be found and executed.

TIP Programming Reference

84 Proprietary IP-622

TIPXCTL - Transfer Control

The TIPXCTL subroutine transfers control to another program on the
same program stack level - once the transfer of control is complete, the
calling program terminates (control will not automatically return).

The contents of the CDA of the calling program are copied to the CDA of
the called program, to serve as the called program's initial CDA contents.

The calling program's CDA data is copied to the CDA of the next program
for a length, which is the least of:

Á The size of the calling program's CDA area

Á The size of the called program's CDA area

Á The value specified by the calling program in the field PIB-CDA-
LENGTH.

The calling program must move the name of the transaction to receive
control to the PIB-TRID field and then call TIPXCTL.

Syntax:

 [MOVE ? TO PIB - CDA- LENGTH]

 MOVE "????????" TO PIB - TRID

 CALL "TIPXCTL"

Where:

PIB-CDA-LENGTH
This field may be set to a value representing the maximum
number of bytes in the CDA that are to be passed to the
CDA of the program that is being invoked

PIB-TRID
Must be set to the transaction name of the program to
which control is to be transferred

Example:

MOVE ... TO CDA

MOVE "NXTSTP" TO PIB - TRID

CALL "TIPXCTL"

PERFORM ERR- ON- XCTL

Error Conditions:

 PIB-STATUS Meaning

PIB-NOT-FOUND

The program is not defined, or the load
module could not be loaded, or the field PIB-
TID was erroneously modified by the program
prior to calling TIPXCTL.

If you receive bad status and want a more

 Program Control System (PCS)

September 2011 Draft 2.5 - Confidential 85

 PIB-STATUS Meaning

detailed description, use PIB-DETAIL-
STATUS. See PIB-DETAIL-STATUS in PIB
Process Information Block on page 20.

PIB-SECURITY

The user running the initiating program does
not have a high enough security to run the
requested program or the transaction is
locked at this time of day.

Example:

An example of the use of TIPXCTL is to provide a means for a transaction
program to offer the user the ability to both exit the transaction and logoff
the TIP system.

To accomplish this, the program includes code such as this:

MOVE SPACES TO CDA

MOVE "LOGOFF" TO PIB - TRID

CALL "TIPXCTL"

CALL "TIPERASE"

MOVE "UNABLE TO LOGOFF" TO ERROR- TEXT

CALL "ROLL" USING ERROR- TEXT

CALL "TIPRTN"

Hint:

· The code illustrated above does not need to check whether or not the
transfer of control to the LOGOFF transaction was completed (if the
TIPXCTL failed for any reason, the program is given control back after
the TIPXCTL).

The LOGOFF program will refuse to perform its function unless LOGOFF
is called at stack level 1. LOGOFF is not permitted if the program stack is
not empty.

TIP Programming Reference

86 Proprietary IP-622

Message Control System (MCS)

This chapter describes the facilities provided by TIP to enable an online
program to perform input and output operations at a terminal.

Provided Interfaces

Three levels of interface are provided:

Interface Description

Message Control
 System (MCS)

MCS is a high level interface; that is, it
allows application programmers to
develop screen formats (templates) and
use them in online programs.
 Using MCS, the programmer can
achieve a high degree of hardware
independence.

Line-Oriented
 Input/Output

The Line-oriented I/O interface consists
of a number of subroutines, which
facilitate the interactive use of the
terminal in a line-by-line fashion.
 A program using these subroutines
issues one line prompts and retrieves
single line replies.

Direct
Communications
Input/Output (DCIO)

The DCIO interface allows the program to
exercise direct control over the activity of
the terminal. This is a low level interface
that requires the application programmer
to supply the control codes that are to be
sent to the terminal.

The DCIO interface is primarily intended
for unusual applications that require
direct control of the terminal. It is
intended for use only when the facilities
of the higher level interfaces (MCS or
Line-Oriented I/O) cannot achieve the
desired results.

Terminal Paging

TIP provides paging, an efficient way to
save screens (pages) into a file, and
access them. Each page contains all the
information necessary to repaint a full
screen including the data.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 87

MCS Screen Formats

The TIP Message Control System provides the capability to create, test
and use screen formats (templates) in online programs. These screen
formats are unique because they are not defined in the programs that use
them. The user program sends and receives only data field information to
and from the terminal.

The MCS System handles all communications codes and heading
information. There are four major components of MCS; three are online
utility transaction programs:

Utility Description

TFD
Utility transaction to define and update
screen formats.

MSGSHOW
Utility transaction to test screen
formats.

MSGAR
Utility transaction that provides librarian
services for screen formats.

The fourth component of MCS is the Message Formatter:

MSGFMT
The message formatter an internal part of TIP that
provides an interface between the formats and the data
supplied by the program. MSGFMT is the TIP format
handler.

 For output operations, it merges user data supplied in the
MCS interface packet, with the information in the screen
format and sends it to a terminal.

 For input operations, MSGFMT extracts the data from the
incoming communications message and stores it in the
MCS interface packet.

MCS Interface Packet

The layout of the data area of the MCS interface packet is similar to that
of a fixed-length data record. There is no provision for tab stops or cursor
coordinates; such items are defined in the screen format by TFD and
handled completely by MSGFMT at user program execution time.

Optimization of Output Messages

The Message Formatter optimizes all output messages. For example, in
the interest of efficiency, a series of blanks may be replaced with a cursor
positioning code sequence.

TIP Programming Reference

88 Proprietary IP-622

Common Carrier Lines

MCS optimization can make a significant improvement in communication
throughput; especially over low speed Common Carrier lines.

Other Advantages

Any online program may call any defined format using its assigned eight-
character name. Furthermore, the programmer may change heading
information in screen formats without changing the programs that use
them. User programs only process the data since the Message Formatter
in TIP handles all communications control characters and heading
information.

These features greatly reduce the programming effort and development
time required to put online programs into production.

How Screen Formats Work

The following diagrams illustrate the relationship between the program
and the TIP screen format. Further information about how a screen format
is defined may be found in the description of the utility transaction TFD
(TIP Format Definition).

Assume that a screen format has been defined as follows:

 ACME WIDGET COMPANY

 Name: UUUUUUUUUUUUUUUUUUUUUUUUU

Address: UUUUUUUUUUUUUUUUUUUUUUUUU

 UUUUUUUUUUUUUUUUUUUUUUUUU

 UUUUUUUUUUUUUUUUUUUUUUUUU

Balance: - ZZZ,ZZZ,ZZ 9.99

EE

The first line is heading information; the strings of "U" characters define
uppercase data fields; the "Balance" field is a numeric field with a floating
and leading negative sign and floating zero suppression. The string of "E"
characters defines an "error" field that may be used by a program to
output informational or error messages.

When the facilities of MCS are used by an online program, the program
only defines the data fields that correspond to the data fields defined in
the screen format. For example, referring to the screen format show
above, the program might define 5 fields this way (error fields are not
considered data fields in this context and are handled separately):

05 S- NAME PICTURE X(25).

05 S- ADDR- 1 PICTURE X(25).

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 89

05 S- ADDR- 2 PICTURE X(25).

05 S- ADDR- 3 PICTURE X(25).

05 S- BALANCE PICTURE S9(9)V99.

The program deals with the data fields - the heading information and the
automatic output editing capabilities of the screen handler are transparent
to the user program.

To output data for example, a program moves the desired data to the
appropriate fields and calls the TIP MCS subroutine "TIPMSGO" to output
the screen format and the data supplied by the program.

Conversely, a call to the TIP MCS subroutine "TIPMSGI" causes data

from the screen to be placed in the program's data fields the program
does not need to be concerned with the mechanics of the terminal
operation or the communication sub-system.

MCS Subroutines

An online TIP program uses TIP screen formats by issuing subroutine
calls to the TIP Message Control System to transfer data to and from the
terminal. The subroutines are summarized as follows:

Subroutine Description

TIPASK

May display a one line question and returns a
one-line answer from the user to the application
program. Pops up a small window with the
question and answers fields and then removes
the window when the answer is given.

TIPASKYN
Similar to TIPASK except that only a single
character reply ("Y" or "N") is accepted.

TIPERASE
Erase screen. Also removes all windows
pushed onto the stack.

TIPLIST
Use to invoke help text processing from within
an application program.

TIPMENU Define an 80-byte menu bar.

TIPMSGE Send "error" message to terminal.

TIPMSGEO Define a deferred error message.

TIPMSGI Input data from terminal.

TIPMSGO Output data to terminal.

TIPMSGOV Display an MCS screen format and overlay the

TIP Programming Reference

90 Proprietary IP-622

Subroutine Description

current screen.

TIPMSGPR
Outputs an MCS screen format logical contents
(headings and data) as print lines to TIPPRINT
(TIP printing interface).

TIPMSGRS
Pops the current screen off and restores the
contents previously (immediately) displayed.

TIPMSGRV Force read terminal screen.

TIPTITLE
Define an 80-byte screen title bar.

All of these subroutines are described in subsequent sections. The
following section describes the interface packet that these subroutines
use to control the action of the subroutine.

Program Control after CALL

The online program issues CALLs to these subroutines and receives
control directly following the CALL to the subroutine.

This means that online programs can transfer data to and from the
terminal in much the same manner as a batch program transfers data to
and from a disk file (for example).

The MCS interface provides hardware independence by requiring the
program to handle only the data fields.

Using Screen Formats

The following code fragment illustrates the general structure of a TIP
program that uses screen formats. Do not interpret the following code
literally - use it to conceptualize the general structure.

Example:

SEND- OUTPUT.

 CALL "TIPMSGO" USING ...

GET- INPUT.

 CALL "TIPMSGI" USING ...

 IF USER - REQUESTED- EXIT

 GO TO END- PROGRAM

 ELSE

 -- evaluate input data --

 END- IF

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 91

 IF ANY - ERRORS- DETECTED

 MOVE ERROR TEXT TO ERROR- MESSAGE- TEXT

 CALL "TIPMSGE" USING ...

 GO TO GET- INPUT

 -- update information on file etc. --

 END- IF

 GO TO SEND- OUTPUT

This program fragment is intentionally not structured the way code usually
is; it merely illustrates that the "flow" of an online program can be quite
straightforward and need not involve programming concepts that differ
radically from batch programming.

Sample Program tstwin

The TIP release includes the COBOL source for a TIP demonstration
program named tstwin.cbl. The tstwin program illustrates how to use the
new windowing features of TIP, that are supported by the MCS facility.

MCS Interface Packet

TC-MCS copybook

The COBOL copybook TC-MCS in the TIP library defines the MCS
interface packet. The MCS interface packet controls the interface
between an online program and the TIP Message Control System. The
Message Control System assumes that this interface packet immediately
precedes the fields that contain the data for the screen format that is in
use.

*

* TIP - MESSAGE CONTROL SYSTEM PACKET

*

 02 MCS- NAME PICTURE X(8).

 02 MCS- TERM PICTURE X(4).

 02 MCS- FUNCTION PICTURE X.

 88 MCS- SEND- FULL VALUE " ".

 88 MCS- RECEIVE- ALL VALUE "A".

 88 MCS- DATA- ONLY VALUE "D".

 88 MCS- UNSOLICITED VALUE "M".

 88 MCS- SCREEN- PRINT VALUE "P".

 88 MCS- REFRESH VALUE "R".

 88 MCS- SHORT- XMIT VALUE "S".

 02 MCS- HOLD PICTURE X.

 88 MCS- KEYBOARD- LOCK VALUE "L".

 02 MCS- SIZE PICTURE S9(4) COMP - 4.

 02 MCS- STATUS PICTURE X.

 88 MCS- GOOD VALUE " ".

 88 MCS- XMIT VALUE " ".

 88 MCS- MSG- WAIT VALUE "0".

 88 MCS- FKEY1 VALUE "1".

 88 MCS- FKEY2 VALUE "2".

TIP Programming Reference

92 Proprietary IP-622

 88 MCS- FKEY3 VALUE "3".

 88 MCS- FKEY4 VALUE "4".

 88 MCS- FKEY5 VALUE "5".

 88 MCS- FKEY6 VALUE "6".

 88 MCS- FKEY7 VALUE "7".

 88 MCS- FKEY8 VALUE "8".

 88 MCS- FKEY9 VALUE "9".

 88 MCS- FKEY10 VALUE "A".

 88 MCS- FKEY11 VALUE "B".

 88 MCS- FKEY12 VALUE "C".

 88 MCS- FKEY13 VALUE "D".

 88 MCS- FKEY14 VALUE "E".

 88 MCS- FKEY15 VALUE "F".

 88 MCS- FKEY16 VALUE "G".

 88 MCS- FKEY17 VALUE "H".

 88 MCS- FKEY18 VALUE "I".

 88 MCS- FKEY19 VALUE "J".

 88 MCS- FKEY20 VALUE "K".

 88 MCS- FKEY21 VALUE "L".

 88 MCS- FKEY22 VALUE "M".

 88 MCS- FPOC VALUE "N".

 88 MCS- TIMED- OUT VALUE "T".

 88 MCS- F- REBUILD VALUE "1" "5" "N".

 88 MCS- F- NEXT VALUE "2" "6".

 88 MCS- F- UPDATE VALUE "4" "8".

 88 MCS- F- FIELD VALUE "<".

 88 MCS- F- MENU VALUE ">".

 02 MCS- FILLER PICTURE X.

 88 MCS- UNDERLINE VALUE "_".

 88 MCS- ASTERISK VALUE "*".

 88 MCS- SPACE VALUE " ".

 02 MCS- COUNT PICTURE S9(4) COMP - 4.

/

 02 MCS- DATA.

*

* USER SUPPLIED RECORD LAYOUT FOR MCS SCREEN FOLLOWS

If an online program uses more than one screen format, the program
redefines the MCS-DATA area to account for the differing layouts of the
screen formats.

An online program interfaces with MCS through subroutine calls that
transfer data to and from the terminal. These subroutines use the
information placed in the interface packet.

The following is a description of the fields that make up the MCS packet

MCS-NAME
A field that must contain the desired screen format name.

 Screen formats are assigned a name when they are
defined using the TFD program. The format name may be
up to eight characters in length and must start with a
character that is not a digit.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 93

 If the field MCS-NAME contains underscore character(s),
MCS replaces underscores with the user's LANGUAGE=
code (as specified in the USER definition record), and
attempts to find that screen format. If the user does not
have a language code assigned, underscores are replaced
with the letter "A".

MCS-TERM
This field is used to specify the intended destination of an
output message (if it is different than the terminal that is
issuing the call to the MCS subroutine).

 If this field does not contain a valid terminal name (namely:
spaces or low values), the screen format I/O is directed to
the terminal where the program is running.

 If the specified terminal is not currently connected to TIP
the terminal name is ignored

MCS-FUNCTION
This field specifies additional optional processing. Each
MCS subroutine description includes a discussion of the
relevant values of this field.

MCS-HOLD
This field may be set to the value "L" before calling
TIPMSGO to lock the terminal keyboard following delivery
of the output message.

 The contents of this field are not preserved - the program
must insert the desired value before issuing a call to MCS

MCS-SIZE

 MCS sets this field to the maximum number of bytes that
may have been received as a result of an input message.
The online program can use this value to determine
whether the data received on an input message represents
a "full screen". This is discussed in the description of the
TIPMSGI subroutine call.

 The online program should not modify this field.

 This field is set to the appropriate value after a call to an
MCS subroutine (for example, TIPMSGI).

MCS-STATUS
MCS sets this field after a call to request terminal input.
The value indicates what type of terminal activity was
detected: for example, MSG WAIT or a function key or
XMIT. Various 88 level items are provided to simplify
program coding.

TIP Programming Reference

94 Proprietary IP-622

 After an output message (TIPMSGO or TIPMSGE), if an
input message is already available this field is set to the
value "M".

 The special status code MCS-F-FIELD indicates that
control was returned to the application because of field
level input. A field, for which the application had requested
field level input, was changed and then exited.

 The special status code MCS-F-MENU indicates that
control was returned to the application because the user
selected an item from the on-screen menu bar (see the
documentation for the subroutine TIPMENU).

MCS-FILLER
This field is set to the desired "fill" character to use on
output. Choices are: space, underscore or asterisk
character.

 During TIPMSGO, the fill character is used to replace:

 leading spaces in unprotected numeric fields (caused by
zero suppression)

 trailing spaces in unprotected alphanumeric fields

 Fill characters are not used in protected data fields. Fill
characters received from the terminal during TIPMSGI are
replaced by spaces or zeroes depending on the field type.

 This field is not modified by MCS

MCS-COUNT
The TIPMSGO subroutine expects this field to contain a
count of the number of data bytes in the MCS-DATA area
that are output to the screen format.

 If this value is less than the maximum number of data field
bytes in the format, the MCS formatter uses the MCS-
FILLER character in data fields, which follow the fields
implied by the count.

 If greater, any excess (trailing) bytes are ignored.

 When terminal input is received, the value in this field
indicates the number of data characters received:

 The input count is always less than or equal to the value
that MCS reports in the MCS-SIZE field (the maximum)
and always includes the full size of the last field where the
cursor was resting.

 For example, if the terminal operator enters a partial value
in a long field and presses XMIT somewhere within that
field, the value in MCS-COUNT will be adjusted upward to

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 95

include the full length of that field. The field itself in the
MCS-DATA area will be padded on the right with the
appropriate character depending on the type of field
(numeric or alphanumeric).

MCS-DATA
This group item defines the start of the data fields that are
defined in the screen format.

 The elementary fields in this group item must be defined by
the programmer in the same order as they appear in the
screen format (top to bottom and left to right). The type and
size (in bytes) of the elementary fields must also match the
definition of the field that was specified when the screen
format was defined.

 Define the fields in this group item as display type fields
packed, binary or floating point fields are not permitted.

 Use the COBOL command provided by the MSGAR online
utility program to create a library element containing the
field layout corresponding to a screen format. This library
element can then be tailored and placed following the
MCS-DATA group item

MCS Subroutine CALLS

TIPASK - Display One Line and Return Answer

TIPASK displays a one-line question and then returns the one line answer
from the user to the application program. TIPASK is like PROMPT but it
pops up a small window with the question and answer fields and then
removes the window when the answer is given. The original screen
contents are preserved and restored when the TIPASK window is
cleared.

To use this MCS routine from TIP/as your program must be defined as a
TIP/ix program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPASK" USING reply - text

 question - text

TIP Programming Reference

96 Proprietary IP-622

Where:

reply-text
The result field TIPASK places the user's reply (max of 80
characters) in this field.

 The contents of the reply field are displayed on the screen
as the initial data in the answer field (if you do not want
anything displayed as a default response, move SPACES
to the reply field before issuing the CALL).

question-text
A field (maximum 80 bytes) containing the text of the
question to ask.

Example:

WORKING- STORAGE SECTION.

....

05 QUESTION PICTURE X(80)

 VALUE "Please supply your company name".

.....

LINKAGE SECTION.

01 WORK- AREA.

 05 REPLY- TEXT PICTURE X(80).

.....

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA.

....

 CALL "TIPASK" USIN G REPLY- TEXT

 QUESTION

Additional Considerations:

If possible, the "ask" window is positioned near the field where the cursor
is located.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 97

Example of TIPASK Window Prompt:

TIPASKYN - Display One Line and Return Answer

TIPASKYN is similar to TIPASK except that only a single character reply
is accepted.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPASKYN" USING reply - text

 question - text

Where:

reply-text
The result field TIPASKYN places the user's reply (max 1
character) in this field.

question-text
A field (maximum 80 bytes) containing the text of the
question to ask. The text of the question should provide a
clue as to the single character replies that are acceptable

TIP Programming Reference

98 Proprietary IP-622

Additional Considerations:

· For TIPASKYN the contents of the reply field are displayed on the
screen as the initial data in the answer field. If you do not want
anything displayed move SPACES to the reply field before the CALL.

· If possible, the "ask" window is positioned near the field where the
cursor is located.

Example:

WORKING- STORAGE SECTION.

05 OK- DEL PICTURE X(80)

 VALUE "Ok to delete this record? (Y/N)"

LINKAGE SECTION.

01 WORK- AREA.

 05 RESPONSE PICTURE X.

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA.

 MOVE "N" TO RESPONSE

 CALL "TIPASKYN" USING RESPONSE

 OK- DEL

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 99

Example of TIPASKYN Window Prompt:

TIPERASE - Erase Screen

The TIPERASE subroutine erases the terminal screen. The program may
want to make this function part of the processing that occurs when the
program terminates. If any overlay screens were on the screen (placed
there by calls to TIPMSGOV), they will be removed too.

Syntax:

CALL "TIPERASE"

Additional Considerations:

The entire screen is erased. Protected and unprotected data and heading
information is removed.

Example:

...

CALL "TIPMSGI" USING MCS

IF MCS - FKEY4

 CALL "TIPERASE"

 CALL "TIPRTN"

END- IF

TIP Programming Reference

100 Proprietary IP-622

The above example illustrates a technique to detect function key F4 and
erase the screen before exiting the program.

TIPLIST - Pick From a List

The TIPLIST subroutine can be used to display help text that is externally
defined in the associated screen format or to display application-supplied
data in a list format. Displayed data can be selected by the terminal user
and XMIT pressed to notify the application which line item is selected.

The list may include headings, comments for each item, scroll bars (for
lists larger than life), and hot keys for rapid selection.

There are three versions of syntax for this subroutine.

Note that to create a list larger than 99 rows or 5000 bytes in total you
must use Syntax 3, which has no limit.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax 1 (2 parameters):

CALL "TIPLIST" USING help - name

 sel - text

Where:

help-name
The first parameter holds the name (PIC X(8)) of externally
defined help text that you wish to be displayed. The help
text must have been defined at the time the screen format
was created with TFD.

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered. This field must be defined as
X(80).

Example:

WORKING- STORAGE SECTION.

 ...

 05 HELP- NAME PICTURE X(8)

 VALUE "APPLHELP".

 ...

LINKAGE SECTION.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 101

01 WORK- AREA.

 05 SEL- TEXT PICTURE X(80).

 ...

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA.

 ...

 CALL "TIPLIST" USING HELP- NAME

 SEL- TEXT

Syntax 2 (3 parameters):

CALL "TIPLIST" USING help - size

 sel - text

 list - data

Where:

help-size
The first parameter (PIC x(8)) contains two 2-digit fields
that declare (respectively) the number of fields and size, in
bytes, of each field passed as the third parameter

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text. This field must
be defined as X(80).

list-data
The third parameter defines the list data (the number of
lines and the size of each line as specified in the HELP-
SIZE parameter above.)

 The first capitalized letter in the text is considered a "hot
key" character at run-time so that the user can quickly
move to that line by pressing the "hot key" instead of
scrolling through the list.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered.

Example:

 05 HELP- SIZE PICTURE X(8)

 VALUE "0635".

 05 LIST - DATA.

TIP Programming Reference

102 Proprietary IP-622

 10 DAT- LINE PICTURE X(35)

 OCCURS 6 TIMES.

 05 SEL- TEXT PICTURE X(80).

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA.

 CALL "TIPLIST" USING HELP- SIZE

 SEL- TEXT

 LIST - DATA

Using TIPLIST with application-supplied data allows you to collect
information and present it to the end user as a list. The end user may
then select some item from the list and respond by pressing XMIT or a
function key. The application could then update, delete, add or display
more detailed information on the item selected.

Example of TIPLIST in action:

In the second format of the call to TIPLIST (with three parameters), the
first line of data may contain keywords that are used to specify the
position of the list and special processing. The order of the keywords is
not significant:

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 103

Syntax 3 (4 parameters):

CALL "TIPLIST" USING rows

 Cols

 sel - text

 list - data

Where:

rows
Lets you select the number of rows that appear in a list.

cols
Lets you select the number of columns that appear in a list.

sel-text
On return from the call, the field defined by the second
parameter contains the user-selected text. This field must
be defined as X(80).

list-data
The fourth parameter defines the list data (the number of
lines (rows) and the size of each line (cols) as specified in
the parameters above.)

 The first capitalized letter in the text is considered a "hot
key" character at run-time so that the user can quickly
move to that line by pressing the "hot key" instead of
scrolling through the list.

 The field PIB-MCS-KEY indicates which function key or
whether XMIT was pressed. The field PIB-MCS-FIELD
holds the line number of the selected text. Only selectable
text lines are numbered.

Example:

 ...

WORKING- STORAGE SECTION.

 ...

01 HELP- SIZE PICTURE X(8)

 VALUE '0506 '.

 ...

01 LIST - DATA.

 10 FILLER PICTURE X(50)

 VALUE 'HEADCHAR=$,CMTCHAR=*,STYLE=LIST,POS=10,38'.

 10 FIL LER PICTURE X(50)

 VALUE '$This is a Header'.

 10 FILLER PICTURE X(50)

 VALUE 'LINE 2'.

 10 FILLER PICTURE X(50)

 VALUE '*This is a comment.'.

 10 FILLER PICTURE X(50)

 VALUE 'LINE 4'.

 10 FILLER PICTURE X(50)

 VALUE '*You may put comme nts here.'.

TIP Programming Reference

104 Proprietary IP-622

 10 FILLER PICTURE X(50)

 VALUE 'LINE 6'.

 10 FILLER PICTURE X(50)

 VALUE '*Please press Return.'

 ...

 01 WORK- AREA.

 05 ROWS PICTURE 9(8) BINARY.

 05 COLS PICTURE 9(8) BINARY.

 05 SEL- TEXT PICTURE X(80).

 ...

PROCEDURE DIVISION USING PIB

 CDA

 MCS

 WORK- AREA.

0000 - INITIALIZATION.

 MOVE 8 TO ROWS.

 MOVE 50 TO COLS.

 CALL 'TIPLIST' USING ROWS

 COLS

 SEL- TEXT

 LIST - DATA.

 CALL 'ROLL' USING SEL- TEXT.

 CALL "TIPRTN".

Using TIPLIST with application-supplied data allows you to collect
information and present it to the end user as a list. The end user may
then select some item from the list and respond by pressing XMIT or a
function key. The application could then update, delete, add or display
more detailed information on the item selected. Using ROW and COLS
you may control the size of your list or menu.

This is an example of a TIPLIST generated list:

*** missing picture ****

Options associated with TIPLIST:

HEADCHAR=x,CMTCHAR=x,LINES=nn,STYLE=xxxx,

 POS=r,c, SELECT={YES|NO|AUTO}

Syntax:

05 FILLER PICTURE X(50)

 VALUE "CMTCHAR=*,LINES=03,STYLE=MENU,POS=14,15".

Where:

HEADCHAR=x
This keyword specifies the single character that is to be
considered a marker for initial lines of data that are to be
treated as headings for the list. The initial lines of data that
begin with this character are used to construct a heading
or title box for the list.
 Default heading character is "!"

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 105

CMTCHAR=x
This keyword specifies the single character that is to be
considered a marker for a comment line. A comment line
may follow a data line in the list data. Comments are
displayed in a box at the bottom of the list when the cursor
rests on a particular list item.
 Default heading character is "#"

LINES=nn
This keyword specifies the number of lines of data to be
presented in the list (if there are more items, a scrolling bar
is also displayed.) The value specified must be between 2
and 20 inclusive; a value less than 2 is set to 2, values
greater than 20 are set to 20.
 If this keyword is omitted or is not conformable with the
POS= keyword, MCS selects a number of lines that is
dependent on the position of the list on the screen.

STYLE=xxxx
This keyword specifies the style desired for the list:
STYLE=LIST or STYLE=MENU
 If this keyword is omitted, the LIST style is used.

POS=r,c
This keyword specifies the row number (r) and the column
number (c) where the upper left corner of the list is to be
placed. The list is placed as close as possible to the
specified location.
 If this keyword is omitted, the list is placed as close as
possible to the cursor location without obscuring the field
where the cursor is resting.

SELECT=

YES The user must explicitly press ENTER or XMIT to
select an item. This is the default.

 NO Do not allow user to select an item. The user can
only use ESCAPE or MSG WAIT to exit the
TIPLIST.

 AUTO
Automatically select an item (as if ENTER or XMIT
were pressed) when the first or capitalized letter is
typed (if it is unique).

Example of a List with heading and comments

01 IN - HELP2 PICTURE X(8) VALUE "1330".

01 IN - TEXT2.

 05 FILLER PICTURE X(30)

 VALUE "!What is your sport?".

 05 FILLER PICTURE X(30)

 VALUE " Golf ".

 05 FILLER PICTURE X(30)

 VALUE "# Relaxing? ".

TIP Programming Reference

106 Proprietary IP-622

 05 FILLE R PICTURE X(30

 VALUE " Baseball ".

 05 FILLE R PICTURE X(30

 VALUE "# Go Blue jays ".

 05 FILLE R PICTURE X(30

 VALUE " Racquet ball ".

 05 FILLE R PICTURE X(30

 VALUE "# Smack it hard".

 05 FILLE R PICTURE X(30

 VALUE " Mud wrestling ".

 05 FILLE R PICTURE X(30

 VALUE "# Male or female".

 05 FILLE R PICTURE X(30

 VALUE " Skinning bears".

 05 FILLE R PICTURE X(30

 VALUE "# Sandy's favorite".

 05 FILLE R PICTURE X(30

 VALUE " Quaffing beer ".

 05 FILLE R PICTURE X(30

 VALUE "# Barry's favo rite".

This coding appears in the TIP sample program tstwin. The list coded
above is displayed as follows:

The cursor is resting on the selection "Golf" and the corresponding
comment line "Relaxing?" appears in the comment box at the bottom of
the list. As the user moves up or down through the list, the comment
changes to reflect which item is currently in focus.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 107

TIPMENU - Display Menu Bar

The call TIPMENU displays a "LOTUS 1-2-3 style" 80-character menu bar
containing specific keywords that the terminal user can later select to
perform specific actions. The menu bar is displayed on the top line of the
screen unless a prior call to TIPTITLE has used line 1 (in that case, the
MENU line appears on line 2.)

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPMENU" USING menu - text

Where:

menu-text
The first parameter is an alphanumeric field containing the
menu choices that are to be offered to the terminal user on
the menu bar. This field defines an area of exactly 80
bytes; each 10-byte subfield can be used as a menu
choice. The following example shows how menu text is
constructed:

01 MENU1.

 05 FILLER PIC X(10) VALUE "Display ".

 05 FILLER PIC X(10) VALUE "Update ".

 05 FILLER PIC X(10) VALUE "Cancel ".

 05 FILLER PIC X(10) VALUE "End ".

 05 FILLER PIC X(10) VALUE "Quit ".

 05 FILLER PIC X(10) VALUE "Home ".

 05 FILLER PIC X(20) VALUE " Pick one and Enter".

 01 FILLER REDEFINES MENU1.

 05 MENU- ITEM OCCURS 8 PIC X(10).

Note: The first subfield (or group of 10 bytes) that contains a
leading space character is considered the end of the
choices. In the above example, there are 6 choices; the
text "Pick one and Enter" is merely placed as a comment
at the end of the menu bar.

Additional Considerations:

· This call only displays the menu bar on the screen. To select an item
from the menu bar, the user must press the keyboard key that is
assigned to the functionality "go to menu bar". See the definition of
keyboard mapping in ñTIP Installation and Operationò under the
heading "Terminal Interface" for additional information. The default
key to enter the menu bar is CTRL-\. Once the user enters the menu

TIP Programming Reference

108 Proprietary IP-622

bar, a menu item can be selected and XMIT can be pressed. When
the menu item is selected and XMIT is pressed, the status code MCS-
F-MENU is set and the program returns from TIPMSGI and can take
whatever action is appropriate.

· The selected item is returned in PIB-MCS-FIELD as an item number.

TIPMSGE - Send Error Text To Screen

After a call to TIPMSGI, the program normally validates the data received
from the terminal.

Programs can use the TIPMSGE subroutine call to:

· output an error (or informational) message

· indicate data fields that contain questionable values

· inform the terminal user that the input was not acceptable.

The TIPMSGE subroutine can accomplish two different objectives:

· Deliver error message text to the screen format.

· Identify data fields that are not acceptable to the program.

To deliver error message text, the program passes a parameter that
defines a string of error text. The TIPMSGE subroutine retrieves from this
location a number of bytes of character data the length of which
corresponds to the sum of all "EEEEE" fields in the screen format
definition.

 Note: Although commonly referred to as an "error" message, the text could be a
purely informational message, such as: "Searching File - Please Wait"

To highlight data fields that are in error, the program may move HIGH-
VALUES (hexadecimal FF) to a field or fields in the MCS-DATA area
before calling the TIPMSGE subroutine. The TIPMSGE subroutine uses
the value in MCS-COUNT to determine how far to search the MCS-DATA
area for any fields containing HIGH-VALUES. Normally this count has
been set by the prior call to TIPMSGI.

TIPMSGE causes such flagged fields to "blink". If data fields in the screen
format are "blinked", TIPMSGE leaves the cursor in the first character of
the first field that is in "error". If no fields are blinked, the cursor remains in
the cursor resting location defined for the screen format.

The TIPMSGE subroutine examines the field "MCS-FUNCTION". If this
field contains the character "R", the TIPMSGE subroutine first "refreshes"
all the data fields in the screen format. The refresh operation is
accomplished by resending all of the FCC attributes to the fields (on
terminals that use FCC). This effectively "unblinks" any fields that are
already blinking before causing new fields to blink.

Set MCS-FUNCTION to "R" only when there are consecutive calls to
TIPMSGE, so that the terminal operator won't have to guess which fields

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 109

are currently blinking (as opposed to those blinking due to prior calls to
TIPMSGE).

Set MCS-FUNCTION to "M" to cause the terminal to beep.

Syntax:

CALL "TIPMSGE" USING MCS

 Tex t

 [fcc - mods]

 [cursor - mods]

Where:

MCS The MCS interface packet (previously described).

text The name of an elementary field or group item that
contains the "error" text to be used to fill the type "EEEE"
fields in the screen format.
The TIPMSGE subroutine copies characters from this field
until it fills all error fields ("EEEE") in the screen format.
For example, if the screen format contained two error
fields: one of 20 characters, another of 70, TIPMSGE
expects 90 characters (20+70) in this field.

fcc-mods
Optional table of two byte entries (two bytes per field) used
in modification of FCC (Field Control Character) attributes
of each data field.

 See FCC Modifications on page 122 for details.

cursor-mods
Optional table of one-byte entries (one byte per field) uses
in specifying the field where the cursor is to rest after the
call to TIPMSGE.

 See Cursor Positioning on page 126 for details.

Example:

05 ERROR- TEXT PICTURE X(30).

 ...

 ...

PERFORM GET- INPUT- MSG.

 ...

IF SCREEN- ACCT- NUMBER < "A0000"

 MOVE HIGH- VALUES TO S- ACCT- NUMB

 MOVE "INVALID ACCOUNT NUMBER"

 TO ERROR- TEXT

 CALL "TIPMSGE" USING MCS

 ERROR- TEXT

TIP Programming Reference

110 Proprietary IP-622

END- IF

Additional Considerations:

· TIP sets MCS-COUNT to zero after a call to the TIPMSGE subroutine.
It is not possible to avoid specifying FCC-MODS if the CURSOR-
MODS parameter is specified.

TIPMSGEO - Define Deferred Error Text

Use the TIPMSGEO subroutine to "define" error message text to MCS.
This error text is not acted upon immediately but is "remembered" by
MCS and is appended to the end of the next output to the terminal by
TIPMSGO.

TIPMSGEO does not actually send any data to the terminal; it is a
mechanism that allows the program to issue a TIPMSGE in anticipation of
a subsequent TIPMSGO. This technique saves the double transmission
that often occurs when a program issues a TIPMSGO immediately
followed by a TIPMSGE.

Syntax:

CALL "TIPMSGEO" USING text

Where:

text The elementary or group item field name that contains the
"error" text that is "remembered" during the next call to the
TIPMSGO subroutine.

 Make the TEXT area as large as the sum of the sizes of all
error fields ("EEEE") in the screen format

Additional Considerations:

· MCS saves the data in the TEXT area and uses this text only on the
next call to TIPMSGO. Whatever text is in the TEXT area when the
TIPMSGO occurs is the data that is sent to the "E" fields.

· A common programming "trick" is to move error text to a work field
whenever an error is detected in the input from the terminal. The
paragraph that outputs data to the screen calls TIPMSGO and then
conditionally calls TIPMSGE if the work field does not contain spaces.
This results in two consecutive outputs to the terminal.

· Using TIPMSGEO instead effectively merges the two outputs into a
single transmission.

TIPMSGI - Read Data from Screen Format

Online programs issue a call to the TIPMSGI subroutine to request
terminal input. The use of TIPMSGI presumes that a TIP screen format

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 111

has already been used to send output to the terminal. This call is used at
points in the online program where input is required from the terminal, for
example, after a CALL to TIPMSGO or TIPMSGE.

Syntax:

CALL "TIPMSGI" USING MCS [fld - ctrl]

Where:

MCS
The MCS interface packet. Before issuing a call to
TIPMSGI, your application must ensure that the MCS
interface packet contains appropriate values in a number
of the fields.

fld-ctrl
Optional second parameter. A cursor control array.

 Each entry in the array is a single byte corresponding to a
field of the MCS format and permits field level control.

 Place an "X" in this field to have control return to the
program when the field has changed and the cursor is
leaving the field;

 Place an "L" in this field to have control return to the
program when the cursor is leaving the field (whether or
not the field changed);

 Place an "E" in this field to have control return to the
program when the field is entered.

 The MCS-STATUS status will be MCS-F-FIELD and the
MCS-COUNT will be set to include the field just exited. The
PIB-MCS-FIELD value will also be the field number just
exited.

Before calling TIPMSGI, your application must ensure that the MCS
interface packet contains appropriate values in these fields:

MCS-NAME
The program normally specifies the same screen format
name in the field "MCS-NAME" for related output and input
functions

MCS-FUNCTION
MCS-FUNCTION may be set to a space or the value "A". A
space indicates no special input processing is required.
Setting MCS-FUNCTION to "A" requests TIPMSGI to
guarantee the input message retrieves ALL the
unprotected data from the screen. When MCS-FUNCTION
contains "A" and XMIT is pressed from a location that is
not within or beyond the last unprotected data field, MCS

TIP Programming Reference

112 Proprietary IP-622

automatically places the cursor in the bottom right corner
of the screen and issues an auto-transmit sequence to
reread the entire screen.

 This feature can almost double the transmission traffic
from the terminal (first there is the partial transmit, then the
full transmit) and therefore can be quite costly.

 To minimize transmission traffic, a preferable technique is
to compare MCS-COUNT (the count of actual data
characters received) to MCS-SIZE (the maximum possible
received on that transmission); if MCS-COUNT is less than
MCS-SIZE, the program informs the user (via a call to
TIPMSGE) that XMIT was pressed at the wrong screen
location; then calls TIPMSGI again to allow the terminal
user to press XMIT from the proper location.

 Before a call to TIPMSGI, the program may also modify
various fields defined in the PIB:

PIB-WAIT-TIME

 The program may move a value to PIB-WAIT-TIME to
specify the amount of time that TIPMSGI is to wait for input
from the terminal. If PIB-WAIT-TIME is not altered (and
presumably contains zero), the TIPMSGI subroutine does
not impose a time limit on the arrival of the desired input
message.

 If an input message does not arrive within the number of
seconds defined by the contents of PIB-WAIT-TIME, the
call to TIPMSGI completes, and the resulting value of PIB-
STATUS is "PIB-TIMED-OUT". Programs which place a
limit on the arrival time of input messages, must be
prepared to handle this situation.

 If PIB-WAIT-TIME is set to a negative value then the value
of system parameter TIMEOFF in the tipix.conf file will be
used as the time to wait. Since TIMEOFF is specified in
minutes and TIPMSGI expects a value in seconds TIP
calculates the default PIB-WAIT-TIME as (TIMEOFF * 60).

 This is useful when a site would like to implement a
standard wait time in their programs. If this technique is
used then the wait time is easily altered by adjusting the
TIMEOFF system parameter. For programs that must
operate on both TIP and TIP/30 the value supplied (to
request the default wait time) must be -1.

 For more details, see the description of the PIB-WAIT-
TIME field in the PCS section of this manual.

PIB-LOCK-INDICATOR
The program may choose to move "H" to the field PIB-

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 113

LOCK-INDICATOR to coerce the TIP File Control System
to hold any current record locks that have been acquired
by the program.

 If the PIB-LOCK-INDICATOR is not set to "H", the file
system releases all record locks acquired by the program
that is calling TIPMSGI. This action is taken by the file
system to prevent programs from locking records and
waiting for an inordinate length of time for terminal input.

 If the program chooses to hold record locks across a
TIPMSGI call, the program should also move an
appropriate value to PIB-WAIT-TIME to place an upper
limit on the length of time that the record locks will be
maintained.

Example:

05 FLD- CTRL.

 10 FIELDS PICTURE X

 OCCURS 20.

 MOVE SPACES TO FLD- CTRL

 MOVE "X" TO FIELDS (2)

 FIELDS (4)

 CALL "TIPMSGI" USING MCS

 FLD- CTRL

 EVALUATE TRUE

 WHEN MCS- F- FIELD

 ... field 2 or 4 was just changed ...

 WHEN MCS- XMIT

 ... process complete screen ...

 END- EVALUATE

When the program issues a call to TIPMSGI, MCS waits for the next input
message from the terminal. Unless the program has specified a maximum
time to wait in the PIB-WAIT-TIME field in the PIB, the program does not
return from the call to TIPMSGI until input is received from the terminal.
The input may be via the XMIT key, the MSG WAIT key or a function key.

Upon returning from the call to TIPMSGI, the user program must
interrogate the field MCS-STATUS to establish the type of input received.

If MCS-STATUS indicates MCS-XMIT (or MCS-GOOD), the unprotected
data from the screen was extracted by MCS and placed in the appropriate
fields within MCS-DATA.

Warning: No data is transferred from the device if a function key is
pressed.

TIP Programming Reference

114 Proprietary IP-622

Error Conditions:

PIB-STATUS Meaning

PIB-TIMED-OUT
There was no response within the time
allowed.

PIB-MSG-AVAIL
The response is available. This is not an
error.

· A program may not request two consecutive inputs from a terminal
without some intervening output message. If a user program requests
terminal input and does not satisfy this constraint, TIP causes the
program to abort with the following reason code:

INPUT REQUEST WHEN OUTPUT IS DUE

· If the program placed a maximum wait time value in the field PIB-
WAIT-TIME, the PIB-STATUS is set to either PIB-TIMED-OUT or PIB-
MSG-AVAIL after the call to TIPMSGI, depending on which of those
two mutually exclusive events occurred.

TIPMSGO - Output Data to Screen Format

MCS provides the TIPMSGO subroutine to display a TIP screen format
(with or without) accompanying data.

Syntax:

CALL "TIPMSGO" USING MCS

 [FCC - MODS]

 [CURSOR- MODS]

Where:

MCS
The MCS interface packet.

FCC-MODS
Optional table of two-byte entries (two bytes per field) that
are used to modify the FCC (field control character)
attributes of selected data fields.

 See FCC Modifications on page 122 for details.

CURSOR-MODS
Optional table of one byte entries (one byte per field) that
specifies the field where the cursor is to rest after the call
to TIPMSGO.

 See Cursor Positioning on page 126 for details.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 115

Since this subroutine call is normally the first interaction between the
program and TIP MCS, the program first correctly initialize various

fields in the MCS packet:

MCS-NAME
The program must supply the name of the screen format to
display. MCS searches for the named format in various
groups according to the setting of the keyword
MCSEARCH= in the terminal user's definition record.

MCS-TERM
This field may be set to the name of the desired output
terminal. The default is the terminal that is running the
program.

 This field need only be modified if the program wants to
output the screen on a terminal other than the terminal
running the program.

 Only screen OUTPUT may be redirected in this manner -
terminal input must always occur at the terminal running
the program.

 MSC-FUNCTION of M must be used with MCS-TERM if
you intend to send a screen as an unsolicited message to
a specified alternate terminal. For screen to be displayed
MSG-WAIT must be pressed on the receiving terminal.

 If your intentions are to display the screen automatically on
the specified alternate terminal then you should use the
TIPFORK function. A TIP session must be started on both
terminals and the alternate terminal must not be running
any other transactions.

MCS-FUNCTION
Before issuing a call to TIPMSGO, the program may
specify one of a number of function codes in this field:

space Transmit the entire screen format (both headings
and data).

D Transmit data only (not the heading information).
 When "D" is specified in MCS-FUNCTION, data

fields that contain low values are not sent to the
terminal - the program may use this technique to
avoid resending unchanged data to the terminal,
thereby reducing output transmission.

M Send the output screen format as an unsolicited
message (sends data and heading information).

P Output screen format with a "print" code at the end
of the output message - to transfer screen to
auxiliary printer.

TIP Programming Reference

116 Proprietary IP-622

S Stop sending heading text when the available
MCS-DATA is exhausted (as specified by the value
in MCS-COUNT).

T Unsolicited and Print. The message is sent to the
specified terminal as an unsolicited message. At
the end of the message text the control code to
cause a "print" operation is included. When the
receiving user presses the MSG WAIT key, the
message is displayed and printed on his AUX1
printer.

MCS-HOLD
Set this field to the value "L" to cause MCS to LOCK the
terminal keyboard after the TIPMSGO is completed.

 If a program wishes to send a series of outputs to the
terminal, this setting may be used to lock the keyboard on
all but the final output call.

 A call to TIPMSGI, or a call to TIPMSGO with MCS-HOLD
not set to "L" unlocks the keyboard. The contents of this
field are not preserved - the program must insert the
desired value before issuing a call to TIPMSGO.

MCS-FILLER
The program must specify which fill character to use:
space, underscore or asterisk. If this field contains an
invalid choice of character, an underscore is assumed

MCS-COUNT
The program must specify the number of bytes of data in
the MCS-DATA area that are to be merged with the screen
format. This value can range from zero - when the program
has no data to output - to a maximum of the sum of all data
fields in the screen format.

 If the screen format was defined with "default data" , the
default data will be displayed if either of the following is
true:

11.1.1..1. the field is located beyond the end of
the data supplied in MCS-DATA - according to the
value of MCS-COUNT.

11.1.1..2. the field contains low-values.

 If the program intends to output all of the data for a
particular screen format, a popular technique is to place a
large value in this field (for example, 9999). If new fields
are later added to the screen format, the programmer does
not need to remember to find and modify all references to
the previous high count.

MCS-DATA
If the program has data that is to be output to the screen

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 117

format, the data is placed in the appropriate elementary
fields in this group item before the CALL is issued.

Additional Considerations:

· When "D" is specified in MCS-FUNCTION (transmit data only), MCS
assumes that the heading data is already displayed on the terminal
and sends only the data, as specified by the value in the field MCS-
COUNT.

· MCS only sends a data field if the corresponding area in MCS-DATA
contains a value that is not LOW-VALUES (X'00'). The program can
output selected fields, using MCS-FUNCTION="D"; setting those
fields that are not to be sent to LOW-VALUES.

Error Conditions:

· If the screen format that is named in the field MCS-NAME cannot be
located, (a spelling error?), the program receives PIB-NOT-FOUND
error status and the terminal screen is erased. The following message
is displayed on the terminal:

 <<<< UNDEFINED SCREEN FORMAT REQUESTED >>>>

 $TRANID$ requested UNDEF

Where:

$TRANID$
is the transaction code of the program that issued the
TIPMSGO CALL

UNDEF
is the data that was found in the field MCS-NAME.

TIPMSGOV - Overlay Current Screen

The TIPMSGOV call displays an MCS screen format and overlays the
current screen. TIPMSGOV takes exactly the same parameters as

TIPMSGO. See TIPMSGO Output Data to Screen Format on page
150. The new screen is positioned based on the values in PIB-ALT-MCS-
ROW and PIB-ALT-MCS-COL and is boxed in. You may issue this call up
to 15 times to produce a tiling effect on the terminal. Each TIPMSGOV
request saves the previous contents of the screen.

When a call is issued to TIPMSGOV, the value in the field PIB-MCS-
OVERLAY (programs can interrogate this field to determine how many of
the maximum 15 overlays are displayed).

TIPMSGOV will return with a PIB-STATUS of PIB-OVERFLOW if the
MCS internal stack overflows, that is, if too many screens have been
overlaid.

TIP Programming Reference

118 Proprietary IP-622

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPMSGOV" USING MCS

 [FCC - MODS]

 [CURSOR- MODS]

Where:

MCS
The MCS interface packet previously described.

FCC-MODS
Optional table of two-byte entries (two bytes per field) that
are used to modify the FCC (field control character)
attributes of selected data fields.

 See FCC Modifications on page 122 for details.

CURSOR-MODS
Optional table of one-byte entries (one byte per field) that
specifies the field where the cursor is to rest after the call
to TIPMSGO.

 See Cursor Positioning on page 126 for details.

Example:

MOVE 5 TO PIB - ALT- MCS- ROW

MOVE 10 TO PIB - ALT- MCS- COL

CALL "TIPMSGOV" USING MCS

CALL "TIPMSGI" USING MCS

 FLD- CTRL

EVALUATE TRUE

 WHEN MCS- FKEY6

 CALL "TIPMSGRS"

 WHEN MCS- FKEY8

 CALL "TIPERASE"

 ...

 WHEN ...

 ...

 END- EVALUATE

IF PIB - MCS- OVERLAY > 0

 CALL "TIPMSGRS"

END- IF

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 119

Example of TIPMSGOV displaying an overlay screen:

TIPMSGPR - Print Current Screen

TIPMSGPR has not been implemented in TIP Studio. For the functionality
found with TIPMSGPR move a 'P' to the MCS-FUNCTION field prior to
issuing a TIPMSGO call. This is exactly the way TIP/30 worked.The call
TIPMSGPR prints an MCS screen format (headings and data) by creating
a print line for each line of the screen format and passing that print line to
the TIPPRINT subroutine.

The interface to TIPPRINT must already be OPEN; this call outputs as
many lines as are represented by the screen format.

Syntax:

CALL "TIPMSGPR" USING print - packet

 MCS

 tipprint - buffer.

print-packet
The first parameter is the printer definition packet that was
used as the first parameter on the CALL TIPPRINT with an
FCS-OPEN function. This packet is described in the
documentation for TIPPRINT; essentially it contains the
name of the printer that is to be used.

TIP Programming Reference

120 Proprietary IP-622

MCS
The second parameter is the MCS area for the current
screen format.

tipprint-buffer
The third parameter is the printer buffer that was used as
the fourth parameter on the CALL TIPPRINT with an FCS-
OPEN function. This packet is described in the
documentation for TIPPRINT; essentially it contains the
name of the buffer that TIPPRINT uses.

Additional Considerations:

· This routine generates as many print lines as needed to represent the
current screen format. This routine only issues calls to TIPPRINT with
the FCS-PUT function code; it does not open or close the TIPPRINT
interface. Other print lines (regardless of origin) can be output by the
program before and after using this call.

TIPMSGRS - Pop the Current Screen

The call TIPMSGRS is the logical inverse of the call to TIPMSGOV.
TIPMSGOV pushes an overlay screen on a stack; TIPMSGRS pops the
overlay stack and restores the previous screen contents. Each time
TIPMSGRS is called (and there is something to restore!), the value in
PIB-MCS-OVERLAY is decremented by 1.

Syntax:

CALL "TIPMSGRS"

There are no parameters for this call.

Example:

MOVE 5 TO PIB - ALT- MCS- ROW

MOVE 10 TO PIB - ALT- MCS- COL

CALL "TIPMSGOV" USING MCS

CALL "TIPMSGI" USING MCS

 FLD- CTRL

EVALUATE TRUE

 WHEN MCS- FKEY6

 CALL "TIPMSGRS"

 WHEN MCS- FKEY8

 CALL "TIPERASE"

 ...

 WHEN ...

 ...

END- EVALUATE

IF PIB - MCS- OVERLAY > 0

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 121

 CALL "TIPMSGRS"

END- IF

TIPMSGRV - Force Full Screen Transmit

On Uniscope terminals, the data between HOME or the last start of entry
character (>) and the cursor is transmitted to the host whenever the
terminal operator presses XMIT (the character that is under the cursor is
normally included too!).

The terminal operator may (by mistake) press XMIT part way through a
screen thereby transmitting only a partial screen instead of the whole
screen. This causes only some of the intended data to be transmitted to
the host.

A TIP program may use the TIPMSGRV function to ensure that the entire
screen is read when input is requested from the terminal. After a call to
TIPMSGI, MCS sets the field MCS-COUNT to the number of characters
of data received. The program can compare this value with the value in
MCS-SIZE, which is the maximum number of bytes that could have been
received on that transmission.

If MCS-COUNT is less than MCS-SIZE, the cursor was not in or beyond
the last data field when XMIT was pressed.

The program can ignore this operator error by calling TIPMSGRV. The
TIPMSGRV subroutine positions the cursor at the bottom right corner of
the terminal (or at the end of a specific row) and causes an auto-transmit
to occur (effectively transmitting the screen contents).

After the call to TIPMSGRV, all unprotected data from the screen is
placed in the data area of the MCS packet - the program must not call

TIPMSGI the TIPMSGRV subroutine repeats the call to TIPMSGI after
forcing the cursor to the appropriate location and causing an auto
transmit.

Syntax:

CALL "TIPMSGRV" USING MCS

 [row]

Where:

MCS
The MCS interface packet previously described.

row
Optional binary halfword field (PIC 9(2) BINARY) that
specifies the screen row number where the cursor is
placed before the auto-transmit.

TIP Programming Reference

122 Proprietary IP-622

 For example, specify a row number of 12 to cause
TIPMSGRV to position the cursor in the last column of row
12 before issuing the auto-transmit code.

 If this parameter is omitted or the value is out of range, the
cursor is placed at the end of the last row of the terminal.

TIPTITLE - Display Title

The call TIPTITLE displays a title on the first display line of your screen.
The title text is automatically centered.

To use this MCS routine from TIP/as your program must be defined as a
TIP program rather than a TIP/30 program, and you need to link your
program with TIPIXAPI32U.LIB rather than TIP30API32U.LIB.

Syntax:

CALL "TIPTITLE"

Example:

01 ATITLE PICTURE X(80)

 VALUE "TIP MCS Windowing Demo".

 ...

 CALL "TIPTITLE" USING ATITLE

Additional Considerations:

· TIPTITLE will always display a title on line one of the display. If there
is anything already on line one, TIPTITLE will overlay it. A subsequent
call to TIPMSGO is adjusted down 1 row to accommodate the title
line. A call to TIPERASE cancels the effect of the title

FCC Modifications

The attributes of data fields in a screen format are specified in the screen
format definition. There are situations, however, when the program needs
to modify the attributes of a field in a screen format while the screen
format is in use.

Using an override mechanism of MCS the program can dynamically alter

the attributes of a field on calls to TIPMSGE and TIPMSGO.

This facility is available only on terminals that support the Field Control
Character (FCC) method of establishing field attributes.

FCC modifications are specified as a table of two-byte entries that MCS
uses to modify the attributes of the field(s) on the terminal. For additional
information see the Unisys publication UTS-400 Programmer Reference
(UP-8359) - FCC Sequence from Host Processor.

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 123

Each table entry consists of two characters that represent the "m" and "n"
characters used in the construction of the FCC sequence for the field
corresponding to the table entry (two bytes per field).

The field characteristics depend on the setting of the characters:

Character Description

Space
Set either character to this value to avoid modifying the
FCC attributes of the corresponding field.

X'00'
Low values (binary zeroes) may be used in the same
way as a space (see description of "space" above).

*
Set either character to an asterisk to make the cursor
rest in the corresponding data field when the data is sent
to the terminal.

.U
Set the two bytes to this value to unprotect the field while
leaving the other characteristics unchanged.

.P
Set the two bytes to this value to protect the field, while
leaving the other characteristics unchanged.

.B
Set the two bytes to this value to blink the field, while
leaving the other characteristics unchanged.

TC-FCC copybook

Include the supplied COBOL copybook (TIP/TC-FCC) in the program (in
the WORKING-STORAGE SECTION) to simplify selection of the desired
"m" and "n" characters.

*

* TIP/30 - FCC MODIFICATION EQUATES

*

* FOLLOWING VALUES ARE USED FOR THE FCC "M" FIELD

*

05 FCC- M- TAB- NRM- CHG PICTURE X VALUE "0".

05 FCC- M- TAB- OFF- CHG PICTURE X VALUE "1".

05 FCC- M- TAB- LOW- CHG PICTURE X VALUE "2".

05 FCC- M- TAB- BLK- CHG PICTURE X VALUE "3".

05 FCC- M- TAB- NRM PICTURE X VALUE "4".

05 FCC- M- TAB- OFF PICTURE X VALUE "5".

05 FCC- M- TAB- LOW PICTURE X VALUE "6".

05 FCC- M- TAB- BLK PICTURE X VALUE "7" .

05 FCC- M- NRM- CHG PICTURE X VALUE "8".

05 FCC- M- OFF- CHG PICTURE X VALUE "9".

05 FCC- M- LOW- CHG PICTURE X VALUE ":".

05 FCC- M- BLK- CHG PICTURE X VALUE ";".

05 FCC- M- NRM PICTURE X VALUE "<".

05 FCC- M- OFF PICTURE X VALUE "=".

05 FCC- M- LOW PICTURE X VALUE ">".

05 FCC- M- BLK PICTURE X VALUE "?".

*

TIP Programming Reference

124 Proprietary IP-622

* ** FOLLOWING VALUES ARE USED FOR THE FCC "N" FIELD

*

05 FCC- N- ANY PICTURE X VALUE "0".

05 FCC- N- ALPHA PICTURE X VALUE "1".

05 FCC- N- NUMERIC PICTURE X VALUE "2".

05 FCC- N- PROTECT PICTURE X VALUE "3".

05 FCC- N- ANY- RIGHT PICTURE X VALUE "4".

05 FCC- N- ALPHA- RIGHT PICTURE X VALUE "5".

05 FCC- N- NUMERIC- RIGHT PICTURE X VALUE "6".

*

* A VALUE OF SPACE IN EITHER THE M OR N FIELD IMPLIES

* NO MODIFICATION DESIRED FOR THOSE ATTRIBUTES

*

* THESE VALUES ARE USED TO CHANGE PROTECTION

*

05 FCC- PROTECT PICTURE XX VALUE ".P".

05 FCC- UNPROTECT PICTURE XX VALUE ".U".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY

*

05 FCC- SHADED PICTURE XX VALUE ".S".

05 FCC- OFF PICTURE XX VALUE ".O".

05 FCC- NORMAL PICTURE XX VALUE ".N".

05 FCC- LOW PICTURE XX VALUE ".L".

05 FCC- BLINK PICTURE XX VALUE ".B".

05 FCC- REVERSE PICTURE XX VALUE ".R".

05 FCC- FLASHING PICTURE XX VALUE ".F".

05 FCC- GROTESQUE PICTURE XX VALUE ".G".

05 FCC- HIDEOUS PICTURE XX VALUE ".H".

05 FCC- COLOR- 10 PICTURE XX VALUE ".0".

05 FCC- COLOR- 11 PICTURE XX VALUE ".1".

05 FCC- COLOR- 12 PICTURE XX VALUE ".2".

05 FCC- COLOR- 13 PICTURE XX VALUE ".3".

05 FCC- COLOR- 14 PICTURE XX VALUE ".4".

05 FCC- COLOR- 15 PICTURE XX VALUE ".5".

05 FCC- COLOR- 16 PICTURE XX VALUE ".6".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY AND ADD TABS

*

05 FCC- SHADED- TAB PICTURE XX VALUE "#S".

05 FCC- OFF- TAB PICTURE XX VALUE "#O".

05 FCC- NORMAL- TAB PICT URE XX VALUE "#N".

05 FCC- LOW- TAB PICTURE XX VALUE "#L".

05 FCC- BLINK- TAB PICTURE XX VALUE "#B".

05 FCC- REVERSE- TAB PICTURE XX VALUE "#R".

05 FCC- FLASHING- TAB PICTURE XX VALUE "#F".

05 FCC- GROTESQUE- TAB PICTURE XX VALUE "#G".

05 FCC- HIDEOUS- TAB PICTURE XX VALUE "#H".

05 FCC- COLOR- 10- TAB PICTURE XX VALUE "#0".

05 FCC- COLOR- 11- TAB PICTURE XX VALUE "#1".

05 FCC- COLOR- 12- TAB PICTURE XX VALUE "#2".

05 FCC- COLOR- 13- TAB PICTURE XX VALUE "#3".

05 FCC- COLOR- 14- TAB PICTURE XX VALUE "#4".

05 FCC- COLOR- 15- TAB PICTURE XX VALUE "#5".

05 FCC- COLOR- 16- TAB PICTURE XX VALUE "#6".

*

* THESE VALUES ARE USED TO CHANGE INTENSITY AND PROTECT

 Message Control System (MCS)

September 2011 Draft 2.5 - Confidential 125

*

05 FCC- SHADED- PROT PICTURE XX VALUE "!S".

05 FCC- OFF- PROT PICTURE XX VALUE "!O".

05 FCC- NORMAL- PROT PICTURE XX VALUE "!N".

05 FCC- LOW- PROT PICTURE XX VALUE "!L".

05 FCC- BLINK- PROT PICTURE XX VALUE "!B".

05 FCC- REVERSE- PROT PICTURE XX VALUE "!R".

05 FCC- FLASHING- PROT PICTURE XX VALUE "!F".

05 FCC- GROTESQUE- PROT PICTURE XX VALUE "!G".

05 FCC- HIDEOUS- PROT PICTURE XX VALUE "!H".

05 FCC- COLOR- 10- PROT PICTURE XX VALUE "!0".

05 FCC- COLOR- 11- PROT PICTURE XX VALUE "!1".

05 FCC- COLOR- 12- PROT PICTURE XX VALUE "!2".

05 FCC- COLOR- 13- PROT PICTURE XX VALUE "!3".

05 FCC- COLOR- 14- PROT PICTURE XX VALUE "!4".

05 FCC- COLOR- 15- PROT PICTURE XX VALUE "!5".

05 FCC- COLOR- 16- PROT PICTURE XX VALUE "!6".

Example:

Assume that the screen format has three fields: name, address, and
credit limit.

05 SCREEN- NAME PICTURE X(40).

05 SCREEN- ADDR PICTURE X(40).

05 SCREEN- CRLIMIT PICTURE S9(5)V99.

Also assume that an FCC-MODS table is set up in the program's WORK
area to build the modifications. Although the table can be specified as an
array (that is indexed or subscripted), the following method is preferable
because fields can be added or removed from the screen format without
major maintenance work (since the FCC modification entries are
referenced by name rather than absolute position in the table).

05 FCC- MODS.

 10 FCC- MOD- NAME PICTURE X(2).

 10 FCC- MOD- ADDR PICTURE X(2).

 10 FCC- MOD- CRLIMIT PICTURE X(2).

To protect the credit limit in the program (presuming that the field is
defined by the screen format to be unprotected) the following statements
are required:

MOVE SPACES TO FCC- MODS.

MOVE ".P" TO FCC- MOD- CRLIMIT

 ...

CALL "TIPMSGO" USING MCS

 FCC- MODS

In this example, the COBOL coding is relatively simple because the literal
is exactly two bytes long and conveniently matches the receiving field.
Many times, however, it is necessary to construct a two byte "m" and "n"
sequence from the entries provided in the copybook TIP/TC-FCC.

TIP Programming Reference

126 Proprietary IP-622

COBOL provides a STRING verb to facilitate this sort of operation:

STRING FCC- M- TAB- BLK FCC- N- NUMERIC

DELIMITED BY SIZE

INTO FCC- MOD- CRLIMIT

The statement shown above concatenates the two named fields from the
copybook (in that order) to create a two-byte value that is then placed in
the field FCC-MOD-CRLIMIT. The specification FCC-M-TAB-BLK
indicates that a tab is to be set (-TAB) and that the field is to blink (-BLK).
The specification FCC-N-NUMERIC indicates that the field is to have the
numeric attribute forced on.

Using the STRING verb eliminates the need to define each FCC MOD
entry as a group item with two subordinate single byte elementary items.

Additional Considerations:

· It is crucial that there are exactly two bytes per field in the FCC
modification table - use the COBOL command of the MSGAR utility
transaction to verify the number of data fields in the screen format.

Cursor Positioning

The program may wish to use the FCC-MODS parameter to alter the
attributes of a field (see previous section) and to force the cursor into a
field that has an FCC mod specified. Since the table entry cannot
simultaneously hold the FCC modification and the asterisk character, the
program must use the CURSOR-MODS parameter (when calling
TIPMSGE and TIPMSGO) in such a situation.

The CURSOR-MODS parameter specifies a table of one-byte entries
(one byte per field in the screen format).

The program may place an asterisk (*) in the appropriate byte to force the
cursor to rest in the corresponding field in the screen format. This facility
is normally required only when the program needs to use FCC-MODS to
alter a field's attributes and also needs to force the cursor into the same
field.

Additional Considerations:

· It is crucial to have exactly one byte per field in the CURSOR
modification table. Use the COBOL command of the MSGAR utility
transaction to verify the number of data fields in the screen format.

Context Sensitive Help

You may enter help text into the TIP "TIPMCS" file using either tfd or
msgar utility programs. The msgar commands HImport HXport and

